login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291841
a(n) is the number of labeled 2-connected planar graphs with n edges.
6
1, 3, 18, 131, 1180, 12570, 154525, 2150748, 33399546, 571979428, 10699844995, 216921707622, 4734437392728, 110613829184421, 2752971531611715, 72676980383698345, 2027560176161932735, 59579981648921326791, 1838669555339295257097, 59435431024069408426431
OFFSET
3,2
LINKS
E. A. Bender, Z. Gao and N. C. Wormald, The number of labeled 2-connected planar graphs, Electron. J. Combin., 9 (2002), #R43.
PROG
(PARI)
Q(n, k) = { \\ c-nets with n-edges, k-vertices
if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k, i)*i*(i-1)/2*
(binomial(2*n-2*k+2, k-i)*binomial(2*k-2, n-j) -
4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
};
seq(N) = {
my(x='x+O('x^(N+3)), t='t,
q=t*x*Ser(vector(N, n, Polrev(vector(2*n\3, k, Q(n, k)), t))),
d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1),
g2=intformal(t^2/2*((1+d)/(1+x)-1)), e2=apply(serlaplace, g2));
Vec(subst(e2, 't, 1));
};
seq(22)
CROSSREFS
Column sums of A100960.
Sequence in context: A154931 A362704 A047731 * A322139 A236342 A369012
KEYWORD
nonn
AUTHOR
Gheorghe Coserea, Sep 10 2017
STATUS
approved