The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A291840 Decimal expansion of the constant c in the asymptotic formula for A291839. 2
 2, 2, 6, 2, 8, 7, 5, 8, 3, 2, 5, 6, 2, 6, 2, 1, 2, 4, 6, 3, 0, 2, 3, 3, 3, 3, 5, 8, 3, 8, 4, 3, 6, 5, 9, 3, 8, 9, 0, 6, 8, 0, 4, 1, 9, 6, 3, 9, 5, 3, 7, 1, 0, 5, 2, 7, 1, 2, 7, 1, 6, 3, 3, 4, 1, 8, 5, 4, 7, 3, 8, 9, 7, 1, 2, 9, 9, 4, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Gheorghe Coserea, Table of n, a(n) for n = 1..55000 E. A. Bender, Z. Gao and N. C. Wormald, The number of labeled 2-connected planar graphs, Electron. J. Combin., 9 (2002), #R43. FORMULA Equals mu(A266389), where function t->mu(t) is defined in the PARI code. Constant c where A291839(n) ~ c*n + o(sqrt(n)). EXAMPLE 2.262875832562621246302333358384... PROG (PARI) x(t) = (1+3*t)*(1/t-1)^3/16; y(t) = { my(y1 = t^2 * (1-t) * (18 + 36*t + 5*t^2), y2 = 2 * (3+t) * (1+2*t) * (1+3*t)^2); (1+2*t)/((1+3*t) * (1-t)) * exp(-y1/y2) - 1; }; alpha(t) = 144 + 592*t + 664*t^2 + 135*t^3 + 6*t^4 - 5*t^5; mu(t) = { my(mu1 = (1+t) * (3+t)^2 * (1+2*t)^2 * (1+3*t)^2 / t^3, y0 = y(t)); mu1 * y0 / ((1 + y0) * alpha(t)); }; N=79; default(realprecision, N+100); t0 = solve(t=.62, .63, y(t)-1); c=mu(t0); eval(select(x->(x != "."), Vec(Str(c))[1..-101])) CROSSREFS Cf. A100960, A266389, A291839. Sequence in context: A071052 A305984 A193388 * A208448 A096869 A345315 Adjacent sequences: A291837 A291838 A291839 * A291841 A291842 A291843 KEYWORD nonn,cons AUTHOR Gheorghe Coserea, Sep 05 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 12 09:35 EDT 2024. Contains 375092 sequences. (Running on oeis4.)