login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291199
Primes p such that phi(p*(p+1)/2) is a triangular number (A000217).
1
2477, 44287823, 58192759, 110369351, 664009019, 2574106333, 6870260119, 7423240007, 60370077539, 188271042191, 235399729007, 236767359977, 305214702643, 717724689959
OFFSET
1,1
COMMENTS
a(15) > 10^12. - Giovanni Resta, Aug 21 2017
EXAMPLE
Prime number 2477 is a term since phi(2477*2478/2) = 1856*1857/2.
PROG
(PARI) isok(n) = isprime(n) && ispolygonal(eulerphi(n*(n+1)/2), 3);
(PARI) is(n) = ispolygonal(eulerphi(n\2+1)*(n-1), 3) && isprime(n) \\ Charles R Greathouse IV, Aug 22 2017
(Python)
from __future__ import division
from sympy.ntheory.primetest import is_square
from sympy import totient, nextprime
A291199_list, p = [], 3
while p < 10**8:
if is_square(8*(p-1)*totient((p+1)//2)+1):
A291199_list.append(p)
p = nextprime(p) # Chai Wah Wu, Aug 22 2017
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Altug Alkan, Aug 20 2017
EXTENSIONS
a(5)-a(14) from Giovanni Resta, Aug 21 2017
STATUS
approved