login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291013
p-INVERT of (1,1,1,1,1,...), where p(S) = (1 - S^2)^3.
2
0, 3, 6, 15, 36, 85, 198, 456, 1040, 2352, 5280, 11776, 26112, 57600, 126464, 276480, 602112, 1306624, 2826240, 6094848, 13107200, 28114944, 60162048, 128450560, 273678336, 581959680, 1235222528, 2617245696, 5536481280, 11693719552, 24662507520, 51942260736
OFFSET
0,2
COMMENTS
Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.
FORMULA
G.f.: x*(3 - 12*x + 15*x^2 - 6*x^3 + x^4)/(1 - 2*x)^3.
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3) for n >= 7.
a(n) = 2^(n-6) * (60 + 17*n + n^2) for n>2. - Colin Barker, Aug 23 2017
E.g.f.: -(15/16) + (9/16)*x - x^2/16 + (1/16)*(15 +9*x +x^2)*exp(2*x). - G. C. Greubel, Jun 05 2023
MATHEMATICA
z = 60; s = x/(1-x); p = (1 - s^2)^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291013 *)
LinearRecurrence[{6, -12, 8}, {0, 3, 6, 15, 36, 85}, 41] (* G. C. Greubel, Jun 05 2023 *)
PROG
(PARI) concat(0, Vec(x*(3 -12*x +15*x^2 -6*x^3 +x^4)/(1-2*x)^3 + O(x^50))) \\ Colin Barker, Aug 23 2017
(Magma) [0, 3, 6] cat [2^(n-6)*(60 +17*n +n^2): n in [3..40]]; // G. C. Greubel, Jun 05 2023
(SageMath) [(2^(n-2)*(60 +17*n +n^2) -15*int(n==0) + 9*int(n==1))//16 for n in range(41)] # G. C. Greubel, Jun 05 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 23 2017
STATUS
approved