login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290899
p-INVERT of the positive integers, where p(S) = 1 - S^2 - S^4.
2
0, 1, 4, 12, 36, 110, 332, 983, 2876, 8380, 24428, 71357, 208868, 612178, 1795228, 5264684, 15436060, 45248195, 132616392, 388652536, 1138993032, 3338020181, 9782903524, 28671786116, 84032220964, 246284956558, 721820483900, 2115530739035, 6200240318564
OFFSET
0,3
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A290890 for a guide to related sequences.
LINKS
Index entries for linear recurrences with constant coefficients, signature (8, -27, 52, -63, 52, -27, 8, -1)
FORMULA
a(n) = 8*a(n-1) - 27*a(n-2) + 52*a(n-3) - 63*a(n-4) + 52*a(n-5) - 27*a(n-6) + 8*a(n-7) - a(n-8).
G.f.: x*(1 - 4*x + 7*x^2 - 4*x^3 + x^4) / (1 - 8*x + 27*x^2 - 52*x^3 + 63*x^4 - 52*x^5 + 27*x^6 - 8*x^7 + x^8). - Colin Barker, Aug 18 2017
MATHEMATICA
z = 60; s = x/(1 - x)^2; p = 1 - s^2 - s^4;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290899 *)
PROG
(PARI) concat(0, Vec(x*(1 - 4*x + 7*x^2 - 4*x^3 + x^4) / (1 - 8*x + 27*x^2 - 52*x^3 + 63*x^4 - 52*x^5 + 27*x^6 - 8*x^7 + x^8) + O(x^40))) \\ Colin Barker, Aug 18 2017
CROSSREFS
Sequence in context: A170637 A170685 A177881 * A290905 A000781 A192205
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 17 2017
STATUS
approved