login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A170685
Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^50 = I.
1
1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131876, 57395628, 172186884, 516560652, 1549681956, 4649045868, 13947137604, 41841412812, 125524238436, 376572715308, 1129718145924
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003946, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
About the initial comment, first disagreement is at index 50 and the difference is 6. - Vincenzo Librandi, Dec 09 2012
LINKS
Index entries for linear recurrences with constant coefficients, signature (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, -3).
FORMULA
G.f. (t^50 + 2*t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 +
2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 +
2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(3*t^50 - 2*t^49 - 2*t^48 - 2*t^47 - 2*t^46 - 2*t^45 - 2*t^44 -
2*t^43 - 2*t^42 - 2*t^41 - 2*t^40 - 2*t^39 - 2*t^38 - 2*t^37 - 2*t^36 -
2*t^35 - 2*t^34 - 2*t^33 - 2*t^32 - 2*t^31 - 2*t^30 - 2*t^29 - 2*t^28 -
2*t^27 - 2*t^26 - 2*t^25 - 2*t^24 - 2*t^23 - 2*t^22 - 2*t^21 - 2*t^20 -
2*t^19 - 2*t^18 - 2*t^17 - 2*t^16 - 2*t^15 - 2*t^14 - 2*t^13 - 2*t^12 -
2*t^11 - 2*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3
- 2*t^2 - 2*t + 1).
MATHEMATICA
With[{num = Total[2 t^Range[49]] + t^50 + 1, den = Total[-2 t^Range[49]] + 3 t^50 + 1}, CoefficientList[Series[num/den, {t, 0, 40}], t]] (* Vincenzo Librandi, Dec 09 2012 *)
coxG[{50, 3, -2, 30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Sep 26 2023 *)
CROSSREFS
Sequence in context: A170541 A170589 A170637 * A177881 A290899 A290905
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved