login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290897
p-INVERT of the positive integers, where p(S) = 1 - S - S^3.
2
1, 3, 9, 29, 95, 307, 976, 3073, 9645, 30283, 95207, 299625, 943363, 2970320, 9351621, 29439359, 92671625, 291715157, 918275995, 2890621063, 9099375792, 28643956245, 90168412937, 283841284899, 893503898503, 2812659866565, 8853968158791, 27871395427616
OFFSET
0,2
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A290890 for a guide to related sequences.
FORMULA
a(n) = 7*a(n-1) - 19*a(n-2) + 27*a(n-3) - 19*a(n-4) + 7*a(n-5) - a(n-6).
G.f.: (1 - 4*x + 7*x^2 - 4*x^3 + x^4) / ((1 - 3*x + 4*x^2 - x^3)*(1 - 4*x + 3*x^2 - x^3)). - Colin Barker, Aug 16 2017
MATHEMATICA
z = 60; s = x/(1 - x)^2; p = 1 - s - s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290897 *)
PROG
(PARI) Vec((1 - 4*x + 7*x^2 - 4*x^3 + x^4) / ((1 - 3*x + 4*x^2 - x^3)*(1 - 4*x + 3*x^2 - x^3)) + O(x^30)) \\ Colin Barker, Aug 16 2017
CROSSREFS
Sequence in context: A356937 A071728 A036550 * A289448 A071732 A289804
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 15 2017
STATUS
approved