login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290542
a(n) is the least integer k in the interval [2, sqrt(n)] such that k^n == k (mod n), or 0 if no such integer exists.
2
0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 4, 2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 5, 3, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 2, 0
OFFSET
4,2
LINKS
FORMULA
a(A000040(n)) = 2 for n >= 3.
a(A001567(n)) = 2 for n >= 1.
a(A006935(n)) = 2 for n >= 2.
For n >= 3, a(x) = 2*A010051(x), where x = A000040(n).
MATHEMATICA
Table[SelectFirst[Range[2, Sqrt@ n], PowerMod[#, n , n] == Mod[#, n] &] /. k_ /; MissingQ@ k -> 0, {n, 4, 90}] (* Michael De Vlieger, Aug 09 2017 *)
PROG
(Magma) lst:=[]; for n in [4..90] do r:=Floor(Sqrt(n)); for k in [2..r] do if Modexp(k, n, n) eq k then Append(~lst, k); break; end if; if k eq r then Append(~lst, 0); end if; end for; end for; lst;
(PARI) a(n) = for (k=2, sqrtint(n), if (Mod(k, n)^n == k, return(k)); ); return (0); \\ Michel Marcus, Aug 19 2017
CROSSREFS
Sequence in context: A069851 A197629 A198255 * A359300 A029834 A318715
KEYWORD
nonn
AUTHOR
STATUS
approved