login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290539
Determinant of circulant matrix of order eight with entries in the first row that are (-1)^(j-1) * Sum_{k>=0} (-1)^k*binomial(n,8*k+j-1), for j=1..8.
2
1, 0, 0, 0, 0, 0, 0, 0, -8489565952, -31872959692800, -932158289501356032, -4169183582652459909120, -5144394740685202662359040, -2505627397073121215653085184, -500556279165026162974748835840, 0, 20396260728315877590754520243175424
OFFSET
0,9
COMMENTS
a(n) = 0 for n == 7 (mod 8).
MAPLE
seq(LinearAlgebra:-Determinant(Matrix(8, 8, shape=Circulant[seq(
(-1)^(j-1)*add((-1)^k*binomial(n, 8*k+j-1), k=0..n/8), j=1..8)])), n=0..20); # Robert Israel, Aug 11 2017
MATHEMATICA
ro[n_] := Table[(-1)^(j-1) Sum[(-1)^k*Binomial[n, 8k+j-1], {k, 0, n/8}], {j, 1, 8}];
M[n_] := Table[RotateRight[ro[n], m], {m, 0, 7}];
a[n_] := Det[M[n]];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Aug 10 2018 *)
CROSSREFS
KEYWORD
sign
AUTHOR
STATUS
approved