Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Sep 08 2022 08:46:19
%S 0,2,0,2,0,0,0,2,0,2,0,0,0,2,0,2,0,0,0,2,0,0,0,0,4,2,0,2,0,0,0,0,0,2,
%T 0,0,0,2,0,2,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,2,0,2,0,0,0,5,3,2,0,0,0,2,
%U 0,2,0,0,0,0,0,2,0,0,0,2,0,4,0,0,0,2,0
%N a(n) is the least integer k in the interval [2, sqrt(n)] such that k^n == k (mod n), or 0 if no such integer exists.
%H Antti Karttunen, <a href="/A290542/b290542.txt">Table of n, a(n) for n = 4..20000</a>
%F a(A000040(n)) = 2 for n >= 3.
%F a(A001567(n)) = 2 for n >= 1.
%F a(A006935(n)) = 2 for n >= 2.
%F For n >= 3, a(x) = 2*A010051(x), where x = A000040(n).
%t Table[SelectFirst[Range[2, Sqrt@ n], PowerMod[#, n , n] == Mod[#, n] &] /. k_ /; MissingQ@ k -> 0, {n, 4, 90}] (* _Michael De Vlieger_, Aug 09 2017 *)
%o (Magma) lst:=[]; for n in [4..90] do r:=Floor(Sqrt(n)); for k in [2..r] do if Modexp(k, n, n) eq k then Append(~lst, k); break; end if; if k eq r then Append(~lst, 0); end if; end for; end for; lst;
%o (PARI) a(n) = for (k=2, sqrtint(n), if (Mod(k, n)^n == k, return(k));); return (0); \\ _Michel Marcus_, Aug 19 2017
%Y Cf. A010051, A290543.
%K nonn
%O 4,2
%A _Arkadiusz Wesolowski_, Aug 05 2017