login
A289615
A246604 (Catalan(n)-n) with initial terms 1,0,0,2 changed to 1,1,1,3.
7
1, 1, 1, 3, 10, 37, 126, 422, 1422, 4853, 16786, 58775, 208000, 742887, 2674426, 9694830, 35357654, 129644773, 477638682, 1767263171, 6564120400, 24466266999, 91482563618, 343059613627, 1289904147300, 4861946401427, 18367353072126, 69533550915977, 263747951750332, 1002242216651339
OFFSET
1,4
COMMENTS
Related to number of mesh patterns of length 2 that avoid the pattern 321.
LINKS
Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016. See Appendix B2.
MATHEMATICA
Join[{1, 1, 1, 3}, Array[CatalanNumber[#]-#&, 30, 4]] (* Paolo Xausa, Dec 08 2023 *)
CROSSREFS
A variant of A246604.
All of A000108, A001453, A246604, A273526, A120304, A289615, A289616, A289652, A289653, A289654 are very similar sequences.
Sequence in context: A104603 A337341 A080625 * A359721 A138807 A149043
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 09 2017
STATUS
approved