login
A273526
Number of 123-avoiding indecomposable permutations.
8
1, 1, 3, 11, 38, 127, 423, 1423, 4854, 16787, 58776, 208001, 742888, 2674427, 9694831, 35357655, 129644774, 477638683, 1767263172, 6564120401, 24466267000, 91482563619, 343059613628, 1289904147301, 4861946401428, 18367353072127, 69533550915978, 263747951750333, 1002242216651340, 3814986502092275
OFFSET
1,3
LINKS
A. L. L. Gao, S. Kitaev, P. B. Zhang. On pattern avoiding indecomposable permutations, arXiv:1605.05490 [math.CO], 2016.
Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016.
FORMULA
a(n) = C(n) - n + 1, where C(n) is the Catalan number.
MATHEMATICA
a[n_] := CatalanNumber[n] - (n - 1)
Table[a[n], {n, 1, 30}] (* Alice L.L. Gao, May 24 2016 *)
PROG
(PARI)
a(n) = binomial(2*n, n)/(n+1) - n + 1; \\ Indranil Ghosh, Mar 04 2017
(Python)
import math
f=math.factorial
def C(n, r): return f(n)/f(r)/f(n-r)
def Catalan(n): return C(2*n, n)/(n+1)
def A273526(n): return Catalan(n)-n+1 # Indranil Ghosh, Mar 04 2017
CROSSREFS
Sequence in context: A026361 A006189 A092201 * A026943 A307571 A047096
KEYWORD
nonn
AUTHOR
STATUS
approved