login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273528
Triangle T(n,m) (n >= 1, 0 <= m < n) giving coefficients of (n-1)! P_n, where P_n is the polynomial formula for row n of A213086.
0
1, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 2, 9, 10, 3, 0, 2, 25, 50, 35, 8, 0, -12, 86, 270, 260, 102, 14, 0, -120, 140, 1344, 2030, 1260, 350, 36, 0, -1248, -1016, 7336, 15862, 13048, 5236, 1024, 78, 0, -9216, -22464, 28528, 124488, 139776, 76104, 22152, 3312, 200, 0, -90720, -322344, 1860, 1036990, 1514205, 1018563, 379890, 80760, 9165, 431
OFFSET
1,9
FORMULA
The first formulas (stripped of factorials) :
1,
k,
k + k^2,
k + 3 k^2 + 2 k^3,
2 k + 9 k^2 + 10 k^3 + 3 k^4,
2 k + 25 k^2 + 50 k^3 + 35 k^4 + 8 k^5,
-12 k + 86 k^2 + 270 k^3 + 260 k^4 + 102 k^5 + 14 k^6,
-120 k + 140 k^2 + 1344 k^3 + 2030 k^4 + 1260 k^5 + 350 k^6 + 36 k^7,
...
EXAMPLE
Row T(5) = {0, 2, 9, 10, 3}, so P_5(k) = (1/4!)(2k + 9k^2 + 10k^3 + 3k^4), which gives 1, 7, 25, 65, 140, 266, ..., that is A001296 (row 5 of A213086), for k >=1.
Triangle begins:
{1},
{0, 1},
{0, 1, 1},
{0, 1, 3, 2},
{0, 2, 9, 10, 3},
{0, 2, 25, 50, 35, 8},
{0, -12, 86, 270, 260, 102, 14},
...
CROSSREFS
Sequence in context: A379542 A373088 A075115 * A085080 A376984 A260308
KEYWORD
sign,tabl
AUTHOR
STATUS
approved