login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289517
Expansion of 1/j^10 where j is the elliptic modular invariant (A000521).
7
1, -7440, 28475640, -74704723520, 151031520191580, -250835888956579488, 356272260416109602240, -444864441668603737630080, 498241081014831011965132710, -508187364230945384698554319920, 477695553082956543572082694287840
OFFSET
10,2
LINKS
FORMULA
a(n) ~ (-1)^n * 2^(3*k) * Pi^(12*k) * exp(Pi*sqrt(3)*n) * n^(3*k - 1) / (3^(3*k) * Gamma(1/3)^(18*k) * Gamma(3*k)), set k = 10. - Vaclav Kotesovec, Mar 07 2018
MATHEMATICA
a[n_] := SeriesCoefficient[1/(1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^10, {q, 0, n}]; Table[a[n], {n, 10, 20}] (* Jean-François Alcover, Nov 02 2017 *)
CROSSREFS
Cf. A000521 (j).
1/j^k: A066395 (k=1), A288727 (k=2), A289454 (k=3), A289455 (k=4), A289512 (k=5), A289513 (k=6), A289514 (k=7), A289515 (k=8), A289516 (k=9), this sequence (k=10).
Sequence in context: A360355 A324897 A051259 * A178281 A250971 A250239
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jul 07 2017
STATUS
approved