login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A288153
Plumb pseudoprimes: odd composites that pass Colin Plumb's extended Euler criterion test.
1
1729, 1905, 2047, 2465, 3277, 4033, 4681, 8321, 12801, 15841, 16705, 18705, 25761, 29341, 33153, 34945, 41041, 42799, 46657, 49141, 52633, 65281, 74665, 75361, 80581, 85489, 87249, 88357, 90751, 104653, 113201
OFFSET
1,1
COMMENTS
Suppose n is composite. Then if n = 1 mod 8, it is in the sequence if 2^((n-1)/4) = 1 or -1 mod n; if n = 3 or 5 mod 8, it is in the sequence if 2^((n-1)/2) = -1 mod n; and if n = 3 mod 8, it is in the sequence if 2^((n-1)/2) = 1 mod n.
a(1) = 1729 is the Hardy-Ramanujan number. - Omar E. Pol, Jun 05 2017
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
PROG
(Perl) use Math::Prime::Util ':all'
foroddcomposites { print "$_, " if is_euler_plumb_pseudoprime($_); } 9, 999999;
(PARI) is(n)=if(n<2 || isprime(n) || n%2==0, return(0)); my(n8=n%8, e=n>>((n8==1)+1), t=Mod(2, n)^e); if(t==1, n8==1 || n8==7, if(t==-1, n8==1 || n8==3 || n8==5, 0))
CROSSREFS
Subsequence of A001567; A001262 is a subsequence.
Sequence in context: A112140 A374417 A044883 * A154717 A306478 A051388
KEYWORD
nonn
AUTHOR
STATUS
approved