OFFSET
1,5
COMMENTS
We use the definition of recursive divisor given in A282446.
More informally, the prime tower factorization of T(n, k) is the intersection of the prime tower factorizations of n and k (the prime tower factorization of a number is defined in A182318).
This sequence has connections with the classical GCD (A003989).
For any i > 0, j > 0 and k > 0:
- T(i, j) = 1 iff gcd(i, j) = 1,
- T(i, j) >= 1,
- T(i, j) <= min(i, j),
- T(i, j) <= gcd(i, j),
- T(i, 1) = 1,
- T(i, i) = i,
- T(i, j) = T(j, i) (the sequence is commutative),
- T(i, T(j, k)) = T(T(i, j), k) (the sequence is associative),
- T(i, i*j) <= i,
- if gcd(i, j) = 1 then T(i*j, k) = T(i, k) * T(j, k) (the sequence is multiplicative),
- T(i, 2*i) = A259445(i).
See also A287958 for the LCM equivalent.
LINKS
Rémy Sigrist, First 100 antidiagonals of array, flattened
Rémy Sigrist, Illustration of the first terms
EXAMPLE
Table starts:
n\k| 1 2 3 4 5 6 7 8 9 10
---+-----------------------------------------------
1 | 1 1 1 1 1 1 1 1 1 1 ...
2 | 1 2 1 2 1 2 1 2 1 2 ...
3 | 1 1 3 1 1 3 1 1 3 1 ...
4 | 1 2 1 4 1 2 1 2 1 2 ...
5 | 1 1 1 1 5 1 1 1 1 5 ...
6 | 1 2 3 2 1 6 1 2 3 2 ...
7 | 1 1 1 1 1 1 7 1 1 1 ...
8 | 1 2 1 2 1 2 1 8 1 2 ...
9 | 1 1 3 1 1 3 1 1 9 1 ...
10 | 1 2 1 2 5 2 1 2 1 10 ...
...
T(4, 8) = T(2^2, 2^3) = 2.
PROG
(PARI) T(n, k) = my (g=factor(gcd(n, k))); return (prod(i=1, #g~, g[i, 1]^T(valuation(n, g[i, 1]), valuation(k, g[i, 1]))))
CROSSREFS
KEYWORD
AUTHOR
Rémy Sigrist, Jun 03 2017
STATUS
approved