The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A287958 Table read by antidiagonals: T(n, k) = least recursive multiple of n and k; n > 0 and k > 0. 3
 1, 2, 2, 3, 2, 3, 4, 6, 6, 4, 5, 4, 3, 4, 5, 6, 10, 12, 12, 10, 6, 7, 6, 15, 4, 15, 6, 7, 8, 14, 6, 20, 20, 6, 14, 8, 9, 8, 21, 12, 5, 12, 21, 8, 9, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 11, 10, 9, 64, 35, 6, 35, 64, 9, 10, 11, 12, 22, 30, 36, 40, 42, 42, 40 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS We say that m is a recursive multiple of d iff d is a recursive divisor of m (as described in A282446). More informally, the prime tower factorization of T(n, k) is the union of the prime tower factorizations of n and k (the prime tower factorization of a number is defined in A182318). This sequence has connections with the classical LCM (A003990). For any i > 0, j > 0 and k > 0: - A007947(T(i, j)) = A007947(lcm(i, j)), - T(i, j) >= 1, - T(i, j) >= max(i, j), - T(i, j) >= lcm(i, j), - T(i, 1) = i, - T(i, i) = i, - T(i, j) = T(j, i) (the sequence is commutative), - T(i, T(j, k)) = T(T(i, j), k) (the sequence is associative), - T(i, i*j) >= i*j, - if gcd(i, j) = 1 then T(i, j) = i*j. See also A287957 for the GCD equivalent. LINKS Rémy Sigrist, First 100 antidiagonals of array, flattened Rémy Sigrist, Illustration of the first terms EXAMPLE Table starts: n\k|     1   2   3   4   5   6   7   8   9  10 ---+----------------------------------------------- 1  |     1   2   3   4   5   6   7   8   9  10  ... 2  |     2   2   6   4  10   6  14   8  18  10  ... 3  |     3   6   3  12  15   6  21  24   9  30  ... 4  |     4   4  12   4  20  12  28  64  36  20  ... 5  |     5  10  15  20   5  30  35  40  45  10  ... 6  |     6   6   6  12  30   6  42  24  18  30  ... 7  |     7  14  21  28  35  42   7  56  63  70  ... 8  |     8   8  24  64  40  24  56   8  72  40  ... 9  |     9  18   9  36  45  18  63  72   9  90  ... 10 |    10  10  30  20  10  30  70  40  90  10  ... ... T(4, 8) = T(2^2, 2^3) = 2^(2*3) = 2^6 = 64. PROG (PARI) T(n, k) = if (n*k==0, return (max(n, k))); my (g=factor(lcm(n, k))); return (prod(i=1, #g~, g[i, 1]^T(valuation(n, g[i, 1]), valuation(k, g[i, 1])))) CROSSREFS Cf. A003990, A007947, A182318, A282446, A287957. Sequence in context: A294977 A091256 A003990 * A308630 A059896 A079542 Adjacent sequences:  A287955 A287956 A287957 * A287959 A287960 A287961 KEYWORD nonn,tabl AUTHOR Rémy Sigrist, Jun 03 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 10 01:26 EDT 2021. Contains 343747 sequences. (Running on oeis4.)