

A285743


a(0) = 0, a(1) = 1; a(2*n) = prime(a(n)), a(2*n+1) = prime(a(n)+a(n+1)).


2



0, 1, 2, 5, 3, 17, 11, 19, 5, 71, 59, 107, 31, 113, 67, 89, 11, 383, 353, 733, 277, 983, 587, 787, 127, 827, 617, 1069, 331, 911, 461, 541, 31, 2707, 2647, 5573, 2381, 8713, 5557, 8017, 1787, 10271, 7753, 13187, 4273, 11383, 6037, 7129, 709, 7529, 6353, 12049, 4549, 14389, 8581, 11657, 2221, 10111, 7109, 11353, 3259
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

A variation on Stern's diatomic sequence (A002487) and primeth recurrence (A007097).


LINKS

Robert Israel, Table of n, a(n) for n = 0..500
Michael Gilleland, Some SelfSimilar Integer Sequences
Eric Weisstein's World of Mathematics, Stern's Diatomic Series
Index entries for sequences related to Stern's sequences


EXAMPLE

a(0) = 0;
a(1) = 1;
a(2) = a(2*1) = prime(a(1)) = prime(1) = 2;
a(3) = a(2*1+1) = prime(a(1)+a(2)) = prime(3) = 5;
a(4) = a(2*2) = prime(a(2)) = prime(2) = 3;
a(5) = a(2*2+1) = prime(a(2)+a(3)) = prime(7) = 17, etc.


MAPLE

A[0]:= 0: A[1]:= 1:
for n from 1 to 50 do
A[2*n]:= ithprime(A[n]);
A[2*n+1]:= ithprime(A[n]+A[n+1]);
od:
seq(A[i], i=0..101); # Robert Israel, Apr 25 2017


MATHEMATICA

a[0] = 0; a[1] = 1; a[n_] := If[EvenQ[n], Prime[a[n/2]], Prime[a[(n  1)/2] + a[(n + 1)/2]]]; Table[a[n], {n, 0, 60}]


CROSSREFS

Cf. A002487, A007097, A082096, A259622, A285742.
Sequence in context: A109619 A248576 A087228 * A077216 A227617 A309080
Adjacent sequences: A285740 A285741 A285742 * A285744 A285745 A285746


KEYWORD

nonn,look


AUTHOR

Ilya Gutkovskiy, Apr 25 2017


STATUS

approved



