login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0) = 0, a(1) = 1; a(2*n) = prime(a(n)), a(2*n+1) = prime(a(n)+a(n+1)).
2

%I #9 Apr 25 2017 15:42:58

%S 0,1,2,5,3,17,11,19,5,71,59,107,31,113,67,89,11,383,353,733,277,983,

%T 587,787,127,827,617,1069,331,911,461,541,31,2707,2647,5573,2381,8713,

%U 5557,8017,1787,10271,7753,13187,4273,11383,6037,7129,709,7529,6353,12049,4549,14389,8581,11657,2221,10111,7109,11353,3259

%N a(0) = 0, a(1) = 1; a(2*n) = prime(a(n)), a(2*n+1) = prime(a(n)+a(n+1)).

%C A variation on Stern's diatomic sequence (A002487) and primeth recurrence (A007097).

%H Robert Israel, <a href="/A285743/b285743.txt">Table of n, a(n) for n = 0..500</a>

%H Michael Gilleland, <a href="/selfsimilar.html">Some Self-Similar Integer Sequences</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SternsDiatomicSeries.html">Stern's Diatomic Series</a>

%H <a href="/index/St#Stern">Index entries for sequences related to Stern's sequences</a>

%e a(0) = 0;

%e a(1) = 1;

%e a(2) = a(2*1) = prime(a(1)) = prime(1) = 2;

%e a(3) = a(2*1+1) = prime(a(1)+a(2)) = prime(3) = 5;

%e a(4) = a(2*2) = prime(a(2)) = prime(2) = 3;

%e a(5) = a(2*2+1) = prime(a(2)+a(3)) = prime(7) = 17, etc.

%p A[0]:= 0: A[1]:= 1:

%p for n from 1 to 50 do

%p A[2*n]:= ithprime(A[n]);

%p A[2*n+1]:= ithprime(A[n]+A[n+1]);

%p od:

%p seq(A[i],i=0..101); # _Robert Israel_, Apr 25 2017

%t a[0] = 0; a[1] = 1; a[n_] := If[EvenQ[n], Prime[a[n/2]], Prime[a[(n - 1)/2] + a[(n + 1)/2]]]; Table[a[n], {n, 0, 60}]

%Y Cf. A002487, A007097, A082096, A259622, A285742.

%K nonn,look

%O 0,3

%A _Ilya Gutkovskiy_, Apr 25 2017