login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285740
Denominator of discriminant of n-th Bernoulli polynomial.
1
1, 3, 16, 3375, 559872, 1815156, 80621568, 124556484375, 80000000000000, 11881340006899968, 1218719480020992, 3405780508865246682482292626953125, 1526226812966134209666905971200000000000000000, 18160335421875000000000000
OFFSET
1,2
EXAMPLE
1, 1/3, 1/16, 28/3375, 343/559872, 31/1815156, 29791/80621568, 178035712/124556484375, 11651995228221/80000000000000, ...
The first few Bernoulli polynomials are
0 | 1;
1 | x - 1/2;
2 | x^2 - x + 1/6;
3 | x^3 - 3*x^2/2 + x/2;
4 | x^4 - 2*x^3 + x^2 - 1/30;
5 | x^5 - 5*x^4/2 + 5*x^3/3 - x/6, etc.
MATHEMATICA
Table[Denominator[Discriminant[BernoulliB[n, x], x]], {n, 1, 14}]
PROG
(PARI) a(n) = denominator(poldisc(bernpol(n))); \\ Michel Marcus, Mar 02 2023
CROSSREFS
Cf. A053382, A053383, A196838, A196839, A285739 (numerators).
Sequence in context: A096404 A111824 A140519 * A174506 A109216 A090478
KEYWORD
nonn,frac
AUTHOR
Ilya Gutkovskiy, Apr 25 2017
STATUS
approved