login
A285740
Denominator of discriminant of n-th Bernoulli polynomial.
1
1, 3, 16, 3375, 559872, 1815156, 80621568, 124556484375, 80000000000000, 11881340006899968, 1218719480020992, 3405780508865246682482292626953125, 1526226812966134209666905971200000000000000000, 18160335421875000000000000
OFFSET
1,2
EXAMPLE
1, 1/3, 1/16, 28/3375, 343/559872, 31/1815156, 29791/80621568, 178035712/124556484375, 11651995228221/80000000000000, ...
The first few Bernoulli polynomials are
0 | 1;
1 | x - 1/2;
2 | x^2 - x + 1/6;
3 | x^3 - 3*x^2/2 + x/2;
4 | x^4 - 2*x^3 + x^2 - 1/30;
5 | x^5 - 5*x^4/2 + 5*x^3/3 - x/6, etc.
MATHEMATICA
Table[Denominator[Discriminant[BernoulliB[n, x], x]], {n, 1, 14}]
PROG
(PARI) a(n) = denominator(poldisc(bernpol(n))); \\ Michel Marcus, Mar 02 2023
CROSSREFS
Cf. A053382, A053383, A196838, A196839, A285739 (numerators).
Sequence in context: A096404 A111824 A140519 * A174506 A109216 A090478
KEYWORD
nonn,frac
AUTHOR
Ilya Gutkovskiy, Apr 25 2017
STATUS
approved