login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285270
a(n) = H_n(n), where H_n is the physicist's n-th Hermite polynomial.
4
1, 2, 14, 180, 3340, 80600, 2389704, 83965616, 3409634960, 157077960480, 8093278209760, 461113571640128, 28784033772836544, 1953535902100115840, 143219579014652040320, 11279408109860685024000, 949705205977314865582336, 85131076752851318807814656, 8094279370190580822082014720
OFFSET
0,2
FORMULA
a(n) ~ exp(-1/4) * 2^n * n^n. - Vaclav Kotesovec, Nov 07 2021
EXAMPLE
Knowing that H_3(x) = 8x^3-12x, a(3) = H_3(3) = 8*3^3-12*3 = 180.
MATHEMATICA
Table[HermiteH[n, n], {n, 0, 18}] (* Michael De Vlieger, May 25 2017 *)
PROG
(PARI) a(n) = polhermite(n, n); \\ Michel Marcus, May 25 2017
(Python)
from sympy import hermite
def a(n): return hermite(n, n) # Indranil Ghosh, May 25 2017
CROSSREFS
Cf. A089466 (probabilist's variant).
Sequence in context: A208195 A252727 A375868 * A109520 A370054 A210097
KEYWORD
nonn
AUTHOR
Natan Arie Consigli, May 24 2017
EXTENSIONS
More terms from Michel Marcus, May 25 2017
STATUS
approved