login
A375868
E.g.f. satisfies A(x) = exp( 2 * (exp(x*A(x)) - 1) ).
1
1, 2, 14, 178, 3342, 83594, 2620998, 98968034, 4375295390, 221781470202, 12684194298998, 808136496137810, 56767509202678094, 4359070656483638762, 363283064756899367462, 32658326649544884611010, 3150270056733608259143422, 324571774149991316277596378
OFFSET
0,2
FORMULA
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A349598.
a(n) = 2 * Sum_{k=0..n} (2*n+2)^(k-1) * Stirling2(n,k).
PROG
(PARI) a(n) = 2*sum(k=0, n, (2*n+2)^(k-1)*stirling(n, k, 2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 01 2024
STATUS
approved