login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285267
Array read by antidiagonals: T(m,n) = number of m-ary words of length n with adjacent elements differing by 3 or less.
3
1, 4, 1, 16, 5, 1, 64, 23, 6, 1, 256, 107, 30, 7, 1, 1024, 497, 154, 37, 8, 1, 4096, 2309, 788, 203, 44, 9, 1, 16384, 10727, 4034, 1111, 252, 51, 10, 1, 65536, 49835, 20650, 6083, 1446, 301, 58, 11, 1, 262144, 231521, 105708, 33305, 8300, 1787, 350, 65, 12, 1
OFFSET
4,2
COMMENTS
All rows are linear recurrences with constant coefficients. See PARI script to obtain generating functions.
LINKS
EXAMPLE
Array starts (m>=4, n>=0):
1 4 16 64 256 1024 4096 16384 ...
1 5 23 107 497 2309 10727 49835 ...
1 6 30 154 788 4034 20650 105708 ...
1 7 37 203 1111 6083 33305 182349 ...
1 8 44 252 1446 8300 47642 273466 ...
1 9 51 301 1787 10619 63111 375091 ...
1 10 58 350 2130 12990 79258 483646 ...
1 11 65 399 2473 15381 95757 596341 ...
MATHEMATICA
diff = 3; m0 = 4; mmax = 13;
TransferGf[m_, u_, t_, v_, z_] := Array[u, m].LinearSolve[IdentityMatrix[m] - z*Array[t, {m, m}], Array[v, m]]
RowGf[d_, m_, z_] := 1+z*TransferGf[m, 1&, Boole[Abs[#1-#2] <= d]&, 1&, z];
row[m_] := row[m] = CoefficientList[RowGf[diff, m, x] + O[x]^mmax, x];
T[m_ /; m >= m0, n_ /; n >= 0] := row[m][[n + 1]];
Table[T[m - n, n], {m, m0, mmax}, {n, m - m0, 0, -1}] // Flatten (* Jean-François Alcover, Jun 17 2017, adapted from PARI *)
PROG
(PARI)
TransferGf(m, u, t, v, z)=vector(m, i, u(i))*matsolve(matid(m)-z*matrix(m, m, i, j, t(i, j)), vectorv(m, i, v(i)));
RowGf(d, m, z)=1+z*TransferGf(m, i->1, (i, j)->abs(i-j)<=d, j->1, z);
for(m=4, 12, print(RowGf(3, m, x)));
for(m=4, 12, v=Vec(RowGf(3, m, x) + O(x^9)); for(n=1, length(v), print1( v[n], ", ") ); print(); );
CROSSREFS
Rows 5-32 are A126473-A126500.
Sequence in context: A094361 A187926 A285281 * A067425 A188481 A138681
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Apr 15 2017
STATUS
approved