login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188481
Riordan matrix (1/(1-4x),(1-sqrt(1-4x))/(2*sqrt(1-4x))).
2
1, 4, 1, 16, 7, 1, 64, 38, 10, 1, 256, 187, 69, 13, 1, 1024, 874, 406, 109, 16, 1, 4096, 3958, 2186, 748, 158, 19, 1, 16384, 17548, 11124, 4570, 1240, 216, 22, 1, 65536, 76627, 54445, 25879, 8485, 1909, 283, 25, 1, 262144, 330818, 259006, 138917, 52984, 14471, 2782, 359, 28, 1
OFFSET
0,2
COMMENTS
Row sums = A141223;
Diagonal sums = A188482;
Inverse matrix: (1/(1+2x)^2, x(1+x)/(1+2x)^2).
FORMULA
T(n,k) = [x^n] ((1-sqrt(1-4*x))/(2*sqrt(1-4*x)))^k/(1-4*x).
Recurrence: T(n+1,k+1) = T(n,k) + 3*T(n,k-1) + T(n,k-2) - T(n,k-3) + T(n,k-4) - T(n,k-5) + ...
EXAMPLE
Triangle begins:
1;
4, 1;
16, 7, 1;
64, 38, 10, 1;
256, 187, 69, 13, 1;
1024, 874, 406, 109, 16, 1;
4096, 3958, 2186, 748, 158, 19, 1;
16384, 17548, 11124, 4570, 1240, 216, 22, 1;
65536, 76627, 54445, 25879, 8485, 1909, 283, 25, 1;
MATHEMATICA
Flatten[Table[Sum[Binomial[n+i, n]Binomial[n-i, k]2^(n-k-i), {i, 0, n-k}], {n, 0, 8}, {k, 0, 8}]]
PROG
(Maxima) create_list(sum(binomial(n+i, n)*binomial(n-i, k)*2^(n-k-i), i, 0, n-k), n, 0, 8, k, 0, n);
CROSSREFS
Sequence in context: A285281 A285267 A067425 * A138681 A038231 A104855
KEYWORD
nonn,easy,tabl
AUTHOR
Emanuele Munarini, Apr 01 2011
EXTENSIONS
Comment corrected by Philippe Deléham, Jan 22 2014
STATUS
approved