login
A285249
0-limiting word of the morphism 0->10, 1-> 0101.
3
0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0
OFFSET
1
COMMENTS
The morphism 0->10, 1-> 0101 has two limiting words. If the number of iterations is even, the 0-word evolves from 0 -> 10 -> 0101 -> 100101100101 -> 010110100101100101010110100101100101; if the number of iterations is odd, the 1-word evolves from 0 -> 10 -> 0101 -> 100101100101, as in A285252.
LINKS
Michel Rigo, Manon Stipulanti, and Markus A. Whiteland, Automatic Abelian Complexities of Parikh-Collinear Fixed Points, arXiv:2405.18032 [cs.DM], 2024. See page 2.
MATHEMATICA
s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {0, 1, 0, 1}}] &, {0}, 12]; (* A285249 *)
Flatten[Position[s, 0]]; (* A285250 *)
Flatten[Position[s, 1]]; (* A285251 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 23 2017
STATUS
approved