

A285252


1limiting word of the morphism 0>10, 1> 0101.


6



1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1


COMMENTS

The morphism 0>10, 1> 0101 has two limiting words. If the number of iterations is even, the 0word evolves from 0 > 10 > 0101 > 100101100101 > 010110100101100101010110100101100101; if the number of iterations is odd, the 1word evolves from 0 > 10 > 0101 > 100101100101, as in A285252.
This is a 3automatic sequence. See Allouche et al. link.  Michel Dekking, Oct 05 2020


LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000
J.P. Allouche, F. M. Dekking, and M. Queffélec, Hidden automatic sequences, arXiv:2010.00920 [math.NT], 2020.


MATHEMATICA

s = Nest[Flatten[# /. {0 > {1, 0}, 1 > {0, 1, 0, 1}}] &, {0}, 11]; (* A285252 *)
Flatten[Position[s, 0]]; (* A285253 *)
Flatten[Position[s, 1]]; (* A285254 *)


CROSSREFS

Cf. A285250, A285253, A285254.
Sequence in context: A005171 A283265 A181406 * A076404 A317961 A010059
Adjacent sequences: A285249 A285250 A285251 * A285253 A285254 A285255


KEYWORD

nonn,easy


AUTHOR

Clark Kimberling, Apr 23 2017


STATUS

approved



