

A291291


Binary sequence defined by BaldiniEschgfäller coupled dynamical system (f,lambda,alpha) with f = A291290, lambda(y) = 1y for y in Y = {0,1}, and alpha(k) = k mod 2 for k in Omega = {0,1,2,3}.


3



0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0


LINKS

Table of n, a(n) for n=0..105.
Lucilla Baldini, Josef Eschgfäller, Random functions from coupled dynamical systems, arXiv preprint arXiv:1609.01750 [math.CO], 2016. See Example 3.3.


FORMULA

Let f(k) = A291290(k) for k in N, lambda(y) = 1y for y in Y = {0,1}, and alpha(k) = k mod 2 for k in Omega = {0,1,2,3}.
Then a(n) for n >= 0 is defined by a(n) = alpha(n) if n in Omega, and otherwise by a(n) = lambda(a(f(n))).


CROSSREFS

Cf. A291290, A291293, A262684.
Sequence in context: A295891 A093879 A117872 * A324681 A285249 A269027
Adjacent sequences: A291288 A291289 A291290 * A291292 A291293 A291294


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Aug 30 2017


STATUS

approved



