login
A291291
Binary sequence defined by Baldini-Eschgfäller coupled dynamical system (f,lambda,alpha) with f = A291290, lambda(y) = 1-y for y in Y = {0,1}, and alpha(k) = k mod 2 for k in Omega = {0,1,2,3}.
3
0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0
OFFSET
0
LINKS
Lucilla Baldini, Josef Eschgfäller, Random functions from coupled dynamical systems, arXiv preprint arXiv:1609.01750 [math.CO], 2016. See Example 3.3.
FORMULA
Let f(k) = A291290(k) for k in N, lambda(y) = 1-y for y in Y = {0,1}, and alpha(k) = k mod 2 for k in Omega = {0,1,2,3}.
Then a(n) for n >= 0 is defined by a(n) = alpha(n) if n in Omega, and otherwise by a(n) = lambda(a(f(n))).
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 30 2017
STATUS
approved