login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285201
Stage at which Ken Knowlton's elevator (version 1) reaches floor n for the first time.
6
1, 2, 5, 14, 45, 174, 825, 4738, 32137, 251338, 2224157, 21952358, 238962581, 2843085270, 36696680241, 510647009850, 7619901954001, 121367981060434, 2055085325869813, 36861997532438654, 698193329457246653, 13924819967953406654, 291683979376372766697, 6402385486361598687666, 146948520147021794869977
OFFSET
1,2
COMMENTS
Indices of records in A285200.
When prefixed by a(0)=0, the first differences give A111063. - N. J. A. Sloane, May 03 2017
FORMULA
a(n) = 2 - n + 2 * Sum_{k=0..n-2} Sum_{j=0..k} k!/j!.
For n >= 2, a(n) = 1+n+2*Sum_{k=2..n} C(n,k)*(k-1)! = 1+n+2*n!*Sum_{k=2..n} 1/(k*(n-k)!). - N. J. A. Sloane, May 03 2017
E.g.f.: exp(x)*(1-x-2*log(1-x)). Omitting the factor exp(x), this gives (essentially) the e.g.f. for A098558 (or A052849). - N. J. A. Sloane, May 03 2017
MAPLE
a:= proc(n) option remember; `if`(n<3, n, ((n-1)^2*a(n-1)
-(n-2)*(2*n-3)*a(n-2)+(n-1)*(n-3)*a(n-3))/(n-2))
end:
seq(a(n), n=1..25); # Alois P. Heinz, Jul 11 2018
MATHEMATICA
a[n_] := 2 - n + 2 Sum[k!/j!, {k, 0, n-2}, {j, 0, k}];
Array[a, 25] (* Jean-François Alcover, Nov 01 2020 *)
KEYWORD
nonn
AUTHOR
R. L. Graham, May 02 2017
STATUS
approved