login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286281
a(n) = floor the elevator is on at the n-th stage of Ken Knowlton's elevator problem, version 2.
4
1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 4, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 4, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 4, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 4
OFFSET
1,2
COMMENTS
An elevator steps up or down a floor at a time. It starts at floor 1, and always goes up from floor 1. From each floor m, it steps up every m-th time it stops there (except that stops when the elevator is going down don't count), otherwise down.
REFERENCES
Ken Knowlton, Email to R. L. Graham and N. J. A. Sloane, May 04 2017
MAPLE
hit:=Array(1..50, 0);
hit[1]:=1; a:=[1]; dir:=1; f:=1;
for s from 2 to 1000 do
if dir>0 or f=1 then f:=f+1; hit[f]:=hit[f]+1; dir:=1; else f:=f-1; dir:=-1; fi;
a:=[op(a), f];
if (dir=1) and ((hit[f] mod f) = 0) then dir:=1; else dir:=-1; fi;
od:
a;
MATHEMATICA
f[n_, m_: 20] := Block[{a = {}, r = ConstantArray[0, m], f = 1, d = 0}, Do[AppendTo[a, f]; If[d == 1, r = MapAt[# + 1 &, r, f]]; If[Or[And[ Divisible[r[[f]], f], d == 1], f == 1], f++; d = 1, f--; d = -1], {i, n}]; a]; f@ 100 (* Michael De Vlieger, May 10 2017 *)
CROSSREFS
For records see A286282.
See A285200 for the first version of the elevator problem.
Sequence in context: A277889 A018194 A338630 * A229830 A105203 A317952
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 09 2017
STATUS
approved