login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A285200
a(n) = floor the elevator is on at the n-th stage of Ken Knowlton's elevator problem, version 1.
6
1, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 1
OFFSET
1,2
COMMENTS
An elevator steps up or down a floor at a time. It starts at floor 1, and always goes up from floor 1. From each floor m, it steps up every m-th time it stops there, otherwise down.
See A285202 for an alternative way to display this sequence.
REFERENCES
Ken Knowlton, Email to R. L. Graham, Apr 26 2017
MAPLE
hit:=Array(1..50, 0);
hit[1]:=1; a:=[1]; dir:=1; f:=1;
for s from 2 to 1000 do
if dir>0 then f:=f+1; else f:=f-1; fi;
hit[f]:=hit[f]+1; a:=[op(a), f];
if (hit[f] mod f) = 0 then dir:=1; else dir:=-1; fi;
od:
a;
CROSSREFS
See A286281 for a second version of the elevator problem.
Sequence in context: A066856 A089280 A246960 * A308567 A192099 A193101
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 02 2017
STATUS
approved