login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285199
Product of n! and the n-th Legendre polynomial evaluated at 2.
0
1, 2, 11, 102, 1329, 22290, 457155, 11083590, 310107105, 9834291810, 348584413275, 13657116176550, 586048630115025, 27335806776328050, 1377091347432275475, 74513480022911679750, 4309990208248262162625, 265383902858519912717250, 17331286029912646125208875
OFFSET
0,2
FORMULA
a(n) = P_n(2)*n!, where P_n is the n-th Legendre polynomial.
E.g.f.: 1/sqrt(1 - 4*x + x^2). - Ilya Gutkovskiy, May 05 2017
D-finite with recurrence: a(n+2) = (4n+6) a(n+1) - (n+1)^2 a(n). - Robert Israel, May 05 2017
a(n) ~ 3^(-1/4) * (2 + sqrt(3))^(n + 1/2) * n^n / exp(n). - Vaclav Kotesovec, May 06 2017
MAPLE
seq(orthopoly[P](n, 2)*n!, n=0..30); # Robert Israel, May 05 2017
MATHEMATICA
Table[n!*LegendreP[n, 2], {n, 0, 20}] (* Vaclav Kotesovec, May 06 2017 *)
PROG
(Python)
from sympy import legendre, factorial
def a(n): return legendre(n, 2)*factorial(n)
print([a(n) for n in range(21)]) # Indranil Ghosh, May 05 2017
(PARI) a(n) = n!*pollegendre(n, 2); \\ Michel Marcus, May 06 2017
CROSSREFS
Sequence in context: A351622 A024721 A367852 * A339081 A081716 A334240
KEYWORD
nonn
AUTHOR
Jeffrey Shallit, May 05 2017
STATUS
approved