Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 May 11 2021 08:56:35
%S 1,2,11,102,1329,22290,457155,11083590,310107105,9834291810,
%T 348584413275,13657116176550,586048630115025,27335806776328050,
%U 1377091347432275475,74513480022911679750,4309990208248262162625,265383902858519912717250,17331286029912646125208875
%N Product of n! and the n-th Legendre polynomial evaluated at 2.
%F a(n) = P_n(2)*n!, where P_n is the n-th Legendre polynomial.
%F E.g.f.: 1/sqrt(1 - 4*x + x^2). - _Ilya Gutkovskiy_, May 05 2017
%F D-finite with recurrence: a(n+2) = (4n+6) a(n+1) - (n+1)^2 a(n). - _Robert Israel_, May 05 2017
%F a(n) ~ 3^(-1/4) * (2 + sqrt(3))^(n + 1/2) * n^n / exp(n). - _Vaclav Kotesovec_, May 06 2017
%p seq(orthopoly[P](n,2)*n!, n=0..30); # _Robert Israel_, May 05 2017
%t Table[n!*LegendreP[n, 2], {n, 0, 20}] (* _Vaclav Kotesovec_, May 06 2017 *)
%o (Python)
%o from sympy import legendre, factorial
%o def a(n): return legendre(n, 2)*factorial(n)
%o print([a(n) for n in range(21)]) # _Indranil Ghosh_, May 05 2017
%o (PARI) a(n) = n!*pollegendre(n, 2); \\ _Michel Marcus_, May 06 2017
%K nonn
%O 0,2
%A _Jeffrey Shallit_, May 05 2017