Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 May 10 2017 14:30:22
%S 1,2,1,2,3,2,1,2,1,2,3,2,1,2,1,2,3,4,3,2,1,2,1,2,3,2,1,2,1,2,3,2,1,2,
%T 1,2,3,4,3,2,1,2,1,2,3,2,1,2,1,2,3,2,1,2,1,2,3,4,3,2,1,2,1,2,3,2,1,2,
%U 1,2,3,2,1,2,1,2,3,4,5,4,3,2,1,2,1,2,3,2,1,2,1,2,3,2,1,2,1,2,3,4
%N a(n) = floor the elevator is on at the n-th stage of Ken Knowlton's elevator problem, version 2.
%C An elevator steps up or down a floor at a time. It starts at floor 1, and always goes up from floor 1. From each floor m, it steps up every m-th time it stops there (except that stops when the elevator is going down don't count), otherwise down.
%D Ken Knowlton, Email to R. L. Graham and N. J. A. Sloane, May 04 2017
%H N. J. A. Sloane, <a href="/A286281/b286281.txt">Table of n, a(n) for n = 1..20000</a>
%H Ken Knowlton, <a href="/A286281/a286281.pdf">Illustration of initial terms showing floors the two versions of the elevator are on. Top: version 1 (A285200), bottom: version 2 (A286281) </a>
%p hit:=Array(1..50, 0);
%p hit[1]:=1; a:=[1]; dir:=1; f:=1;
%p for s from 2 to 1000 do
%p if dir>0 or f=1 then f:=f+1; hit[f]:=hit[f]+1; dir:=1; else f:=f-1; dir:=-1; fi;
%p a:=[op(a), f];
%p if (dir=1) and ((hit[f] mod f) = 0) then dir:=1; else dir:=-1; fi;
%p od:
%p a;
%t f[n_, m_: 20] := Block[{a = {}, r = ConstantArray[0, m], f = 1, d = 0}, Do[AppendTo[a, f]; If[d == 1, r = MapAt[# + 1 &, r, f]]; If[Or[And[ Divisible[r[[f]], f], d == 1], f == 1], f++; d = 1, f--; d = -1], {i, n}]; a]; f@ 100 (* _Michael De Vlieger_, May 10 2017 *)
%Y For records see A286282.
%Y See A285200 for the first version of the elevator problem.
%K nonn
%O 1,2
%A _N. J. A. Sloane_, May 09 2017