login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285165
Triangle read by rows: T(n,k) is the number of c-nets with n-k inner vertices and k outer vertices, 3 <= n, 2 <= k <= n-1.
9
1, 1, 1, 7, 6, 1, 73, 56, 16, 1, 879, 640, 208, 30, 1, 11713, 8256, 2848, 560, 48, 1, 167423, 115456, 41216, 9440, 1240, 70, 1, 2519937, 1710592, 624384, 156592, 25864, 2408, 96, 1, 39458047, 26468352, 9812992, 2613664, 496944, 61712, 4256, 126, 1, 637446145, 423641088, 158883840, 44169600, 9234368, 1377600, 132480, 7008, 160, 1, 10561615871, 6966960128, 2636197888, 756712960, 169378560, 28663040, 3430528, 261648, 10920, 198, 1
OFFSET
3,4
LINKS
Gheorghe Coserea, Rows n=3..203, flattened
M. Bodirsky, C. Groepl, D. Johannsen and M. Kang, A Direct Decomposition of 3-connected Planar Graphs, conference paper (FPSAC05).
FORMULA
A106651(n) = T(n,2) = Sum_{k=3..n-1} T(n,k), for n>=4.
T(n,n-2) = A054000(n-3) for n>= 5, T(n,n-3) = 8*A006325(n-3) for n>=6. - Gheorghe Coserea, Apr 19 2017
EXAMPLE
Triangle starts:
n\k [2] [3] [4] [5] [6] [7] [8] [9] [10]
[3] 1;
[4] 1, 1;
[5] 7, 6, 1;
[6] 73, 56, 16, 1;
[7] 879, 640, 208, 30, 1;
[8] 11713, 8256, 2848, 560, 48, 1
[9] 167423, 115456, 41216, 9440, 1240, 70, 1;
[10] 2519937, 1710592, 624384, 156592, 25864, 2408, 96, 1;
[11] 39458047, 26468352, 9812992, 2613664, 496944, 61712, 4256, 126, 1;
[12] ...
PROG
(PARI)
x='x; y='y;
system("wget http://oeis.org/A106651/a106651.txt");
Fy = read("a106651.txt");
A106651_ser(N) = {
my(y0 = 1 + O(x^N), y1=0, n=1);
while(n++,
y1 = y0 - subst(Fy, y, y0)/subst(deriv(Fy, y), y, y0);
if (y1 == y0, break()); y0 = y1);
y0;
};
z='z; t='t; u='u; c0='c0;
r1 = 2*t*u + 2*t^2*u + 2*t*u^2 + 2*t^2*u^2;
r2 = 4*t^2 + 4*t^3 + 4*t^2*u + 4*t^3*u;
r3 = -4*t^2 - 4*t^3 - 2*t*u - 6*t^2*u - 4*t^3*u - 2*t*u^2 - 2*t^2*u^2;
r4 = 2*t + 2*t^2 + 4*t^3 - u + t*u + 4*t^3*u + u^2 + t*u^2 - 2*t^2*u^2;
r5 = -2*t - 2*t^2 - 4*t^3 - 4*t*u - 2*t^2*u - 4*t^3*u + 2*t^2*u^2;
r6 = u + 2*t*u + 2*t^2*u - t*u^2;
Fz = r1*z^2 + (r3*c0 + r4)*z + r2*c0^2 + r5*c0 + r6;
seq(N) = {
N += 10; my(z0 = 1 + O(t^N) + O(u^N), z1=0, n=1,
Fz = subst(Fz, 'c0, subst(A106651_ser(N), 'x, 't)));
while(n++,
z1 = z0 - subst(Fz, z, z0)/subst(deriv(Fz, z) , z, z0);
if (z1 == z0, break()); z0 = z1);
vector(N-10, n, vector(n, k, polcoeff(polcoeff(z0, n-k), k-1)));
};
concat(seq(11))
CROSSREFS
Cf. A290326.
Columns k=2-9 give: A106651(k=2), A285166(k=3), A285167(k=4), A285168(k=5), A285169(k=6), A285170(k=7), A285171(k=8), A285172(k=9).
Sequence in context: A152722 A100082 A152861 * A198925 A355923 A375206
KEYWORD
nonn,tabl
AUTHOR
Gheorghe Coserea, Apr 12 2017
STATUS
approved