The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A285162 1-limiting word of the morphism 0->10, 1-> 0011. 6
 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 COMMENTS The morphism 0->10, 1-> 0011 has two limiting words.  If the number of iterations is even, the 0-word evolves from 0 -> 10 -> 001110 -> 101000110011001110 -> 001110001110101000110011101000110011101000110011001110; if the number of iterations is odd, the 1-word evolves from 0 -> 10 -> 001110 -> 101000110011001110, as in A285162. This is a 3-automatic sequence. See Allouche et al. link. - Michel Dekking, Oct 05 2020 LINKS J.-P. Allouche, F. M. Dekking, and M. QueffĂ©lec, Hidden automatic sequences, arXiv:2010.00920 [math.NT], 2020. MATHEMATICA s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {0, 0, 1, 1}}] &, {0}, 10]; (* A285159 *) Flatten[Position[s, 0]];  (* A285160 *) Flatten[Position[s, 1]];  (* A285161 *) CROSSREFS Cf. A285160, A285160, A285161. Sequence in context: A185276 A266282 A228747 * A074381 A179560 A341602 Adjacent sequences:  A285159 A285160 A285161 * A285163 A285164 A285165 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 21 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 04:56 EDT 2021. Contains 345056 sequences. (Running on oeis4.)