login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A285159 0-limiting word of the morphism 0->10, 1-> 0011. 6
0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

The morphism 0->10, 1-> 0011 has two limiting words.  If the number of iterations is even, the 0-word evolves from 0 -> 10 -> 001110 -> 101000110011001110 -> 001110001110101000110011101000110011101000110011001110; if the number of iterations is odd, the 1-word evolves from 0 -> 10 -> 001110 -> 101000110011001110, as in A285162.

This is a 3-automatic sequence. See Allouche et al. link. - Michel Dekking, Oct 05 2020

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000

J.-P. Allouche, F. M. Dekking, and M. Queffélec, Hidden automatic sequences, arXiv:2010.00920 [math.NT], 2020.

MATHEMATICA

s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {0, 0, 1, 1}}] &, {0}, 10]; (* A285159 *)

Flatten[Position[s, 0]];  (* A285160 *)

Flatten[Position[s, 1]];  (* A285161 *)

CROSSREFS

Cf. A285160, A285161, A285162.

Sequence in context: A138150 A271591 A287790 * A073089 A323158 A011657

Adjacent sequences:  A285156 A285157 A285158 * A285160 A285161 A285162

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 21 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 26 22:19 EDT 2021. Contains 348269 sequences. (Running on oeis4.)