login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A285159 0-limiting word of the morphism 0->10, 1-> 0011. 6
0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

The morphism 0->10, 1-> 0011 has two limiting words.  If the number of iterations is even, the 0-word evolves from 0 -> 10 -> 001110 -> 101000110011001110 -> 001110001110101000110011101000110011101000110011001110; if the number of iterations is odd, the 1-word evolves from 0 -> 10 -> 001110 -> 101000110011001110, as in A285162.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000

MATHEMATICA

s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {0, 0, 1, 1}}] &, {0}, 10]; (* A285159 *)

Flatten[Position[s, 0]];  (* A285160 *)

Flatten[Position[s, 1]];  (* A285161 *)

CROSSREFS

Cf. A285160, A285161, A285162.

Sequence in context: A138150 A271591 A287790 * A073089 A323158 A011657

Adjacent sequences:  A285156 A285157 A285158 * A285160 A285161 A285162

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 21 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 12:07 EST 2019. Contains 329862 sequences. (Running on oeis4.)