login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A285080 0-limiting word of the morphism 0->10, 1-> 011. 6
0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

The morphism 0->10, 1->011 has two limiting words.  If the number of iterations is even, the 0-word evolves from 0 -> 10 -> 01110 -> 1001101101110  -> 0111010011011100110111001101101110; if the number of iterations is odd, the 1-word evolves from 0 -> 10 -> 01110 -> 1001101101110, as in A285083.

Let v(n) = position of n-th 1.  Then v(n)/n -> (1+sqrt(5))/2, the golden ratio (A001622); see A285082.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000

MATHEMATICA

s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {0, 1, 1}}] &, {0}, 14]; (* A285080 *)

Flatten[Position[s, 0]];  (* A285081 *)

Flatten[Position[s, 1]];  (* A285082 *)

CROSSREFS

Cf. A001622, A285081, A285082, A285083.

Sequence in context: A265333 A159637 A095076 * A167392 A190201 A189702

Adjacent sequences:  A285077 A285078 A285079 * A285081 A285082 A285083

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 19 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 14 04:56 EST 2019. Contains 329110 sequences. (Running on oeis4.)