This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A190201 a(n) = [n*u+n*v]-[n*u]-[n*v], where u=sqrt(5), v=1/u, and []=floor. 3
 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 MATHEMATICA u = 5^(1/2); v = 1/u; f[n_] := Floor[n*u + n*v] - Floor[n*u] - Floor[n*v] t = Table[f[n], {n, 1, 120}] (*A190201*) Flatten[Position[t, 0]]      (*A190202*) Flatten[Position[t, 1]]      (*A190203*) PROG (PARI) for(n=1, 30, print1(floor(n*(sqrt(5) + 1/sqrt(5))) - floor(n*sqrt(5)) - floor(n/sqrt(5)), ", ")) \\ G. C. Greubel, Dec 27 2017 (MAGMA) [Floor(n*(Sqrt(5) + 1/Sqrt(5))) - Floor(n*Sqrt(5)) - Floor(n/Sqrt(5)): n in [1..30]]; // G. C. Greubel, Dec 27 2017 CROSSREFS Cf. A190202, A190203. Sequence in context: A095076 A285080 A167392 * A189702 A168395 A278718 Adjacent sequences:  A190198 A190199 A190200 * A190202 A190203 A190204 KEYWORD nonn AUTHOR Clark Kimberling, May 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 18:03 EST 2019. Contains 329809 sequences. (Running on oeis4.)