login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A284637 Discriminants of polynomials having Fibonacci numbers (A000045) for coefficients, P_n(x) = Sum_{k=1..n} F(k)*x^(2n-1-k) + Sum_{k=1..(n-1)} (-1)^k*F(n-k)*x^(n-k-1); a(1) = 1. 1
1, 5, 900, 2592000, 152587890625, 88060251340800000, 608462684559542896890625, 39491298245528363382865920000000, 24652445390187744298440793976121600000000, 136940866302168849110603332519531250000000000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
D. H. Lehmer and E. Lehmer showed that the roots of these polynomials can be explicitly given, and that a(n) is divisible by 5^(n-1)*n^(2n-4).
The quotients a(n)/(5^(n-1)*n^(2n-4)) are 1, 1, 4, 81, 15625, 16777216, 137858491849, 7355827511386641, 2758702310349224820736, 7011372354671045074462890625, ...
LINKS
D. H. Lehmer and E. Lehmer, Properties of polynomials having Fibonacci numbers for coefficients, Fibonacci Quarterly, Vol 21, No. 1 (1983), pp. 62-64.
FORMULA
a(n) ~ 5 * n^(2*n - 4) * phi^(2*n*(n-2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Mar 02 2023
EXAMPLE
The first 5 polynomials are:
P_1(x) = 1
P_2(x) = x^2 + x - 1
P_3(x) = x^4 + x^3 + 2x^2 - x + 1
P_4(x) = x^6 + x^5 + 2x^4 + 3x^3 - 2x^2 + x - 1
P_5(x) = x^8 + x^7 + 2x^6 + 3x^5 + 5x^4 - 3x^3 + 2x^2 - x + 1
The discriminant of P_2(x), for example, is a(2) = 1^2 - 4*1*(-1) = 5.
MATHEMATICA
a={}; n=0; While[Length[a]<10, n++; f:=Fibonacci[Range[n]]; c = Join[Drop[Reverse[-(-1)^Range[n]]*f, -1], Reverse[f]]; p=x^Range[0, 2n-2].c; d=Discriminant[p, x]; AppendTo[a, d]]; a
PROG
(PARI) a(n) = if (n==1, 1, poldisc(sum(k=1, n, fibonacci(k)*x^(2*n-1-k)) + sum(k=1, n-1, (-1)^k*fibonacci(n-k)*x^(n-k-1)))); \\ Michel Marcus, Mar 02 2023
CROSSREFS
Cf. A000045.
Sequence in context: A299837 A299726 A094630 * A173914 A015940 A093853
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 30 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 30 19:56 EDT 2023. Contains 363061 sequences. (Running on oeis4.)