|
|
A094630
|
|
Number of 3-uniform T_0-covers on n vertices.
|
|
3
|
|
|
1, 0, 0, 0, 5, 893, 1039947, 34351783511, 72057317345649377, 19342812465159881755696499, 1329227995591486918148744122456237749, 46768052394574271874021714673583968385714779097997, 1684996666696914425950059618212919561731019777110516294609942096153
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
LINKS
|
|
|
FORMULA
|
E.g.f.: exp(-x+x^2/2+x^3/3)*Sum_{n>=0} (2^binomial(n, 3)*exp(-2^(n-1)*x^2)*x^n/n!.
|
|
PROG
|
(PARI) seq(n)={Vec(serlaplace(exp(-x + x^2/2 + x^3/3 + O(x*x^n))*sum(k=0, n, 2^binomial(k, 3)*exp(-2^(k-1)*x^2 + O(x*x^(n-k)))*x^k/k!)))} \\ Andrew Howroyd, Jan 29 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|