|
|
A284638
|
|
Numbers k such that (4*10^k + 149)/9 is prime.
|
|
0
|
|
|
0, 2, 3, 6, 12, 15, 17, 24, 26, 30, 156, 341, 519, 1284, 1455, 1841, 1874, 3410, 3890, 6185, 8472, 8696, 67784, 72174, 84779, 87669, 99693, 114296, 119474, 152253, 183659
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
For k>1, numbers such that k-2 occurrences of the digit 4 followed by the digits 61 is prime (see Example section).
a(32) > 2*10^5.
|
|
LINKS
|
Table of n, a(n) for n=1..31.
Makoto Kamada, Factorization of near-repdigit-related numbers.
Makoto Kamada, Search for 4w61.
|
|
EXAMPLE
|
3 is in this sequence because (4*10^3 + 149)/9 = 461 is prime.
Initial terms and primes associated:
a(1) = 0, 17;
a(2) = 2, 61;
a(3) = 3, 461;
a(4) = 6, 444461;
a(5) = 12, 444444444461; etc.
|
|
MATHEMATICA
|
Select[Range[0, 100000], PrimeQ[(4*10^# + 149)/9] &]
|
|
PROG
|
(PARI) isok(k) = ispseudoprime((4*10^k + 149)/9); \\ Altug Alkan, Apr 12 2018
|
|
CROSSREFS
|
Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.
Sequence in context: A291174 A281110 A252792 * A111271 A217647 A070926
Adjacent sequences: A284635 A284636 A284637 * A284639 A284640 A284641
|
|
KEYWORD
|
nonn,more,hard
|
|
AUTHOR
|
Robert Price, Mar 30 2017
|
|
EXTENSIONS
|
a(28)-a(31) from Robert Price, Apr 12 2018
|
|
STATUS
|
approved
|
|
|
|