login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284102
Numbers that are the sum of 10 consecutive primes and also the sum of 10 consecutive semiprimes.
1
6504, 12946, 12990, 19052, 19764, 21490, 31638, 35604, 41300, 42364, 45212, 52528, 58104, 60034, 63400, 66662, 67858, 69880, 74090, 74824, 78542, 88844, 96256, 96346, 97818, 104584, 106970, 111122, 113120, 117540, 125384
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
a(1)=6504 because 6504 is the sum of 10 consecutive primes A000040(114..114+9)={619,631,641,643,647,653,659,661,673,677} and also
6504 is the sum of 10 consecutive semiprimes A001358(192..192+9)={629,633,634,635,649,655,662,667,669,671}.
Note that a(1) = 6504 = A283873(10).
MAPLE
N:= 10^6:
P:= select(isprime, [$1..N]):
S:= select(t -> numtheory:-bigomega(t)=2, [$1..N]):
P10:= {seq(add(P[i], i=m..m+9), m=1..nops(P)-9)}:
S10:= {seq(add(S[i], i=m..m+9), m=1..nops(S)-9)}:
sort(convert(P10 intersect S10, list)); # Robert Israel, Mar 20 2017
MATHEMATICA
With[{nn = 12600}, Intersection[Total /@ Partition[Prime@ Range@ PrimePi@ nn, 10, 1], Total /@ Partition[Select[Range@ nn, PrimeOmega@ # == 2 &], 10, 1]]] (* Michael De Vlieger, Mar 20 2017 *)
PROG
(PARI) list(lim)=if(lim<6504, return([])); my(v=List(), u=v, P=primes(9), x=(lim+10*log(lim))\1, t); forprime(p=2, x\2, forprime(q=2, min(x\p, p), listput(u, p*q))); u=Set(u); while(u[#u]+1+(t=sum(i=0, 8, u[#u-i]))<=lim, for(n=x+1, lim-t, if(issemi(n), u=concat(u, n); next(2))); break); for(i=1, #u-9, u[i]+=sum(j=1, 9, u[i+j])); t=vecsum(P); forprime(p=P[#P]+1, , t+=p; if(t>lim, break); if(setsearch(u, t), listput(v, t)); t-=P[1]; P=concat(P[2..9], p)); Vec(v) \\ Charles R Greathouse IV, Mar 20 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Mar 20 2017
STATUS
approved