login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283443
a(n) = lcm(n,6) / gcd(n,6).
4
0, 6, 3, 2, 6, 30, 1, 42, 12, 6, 15, 66, 2, 78, 21, 10, 24, 102, 3, 114, 30, 14, 33, 138, 4, 150, 39, 18, 42, 174, 5, 186, 48, 22, 51, 210, 6, 222, 57, 26, 60, 246, 7, 258, 66, 30, 69, 282, 8, 294, 75, 34, 78, 318, 9, 330, 84, 38, 87, 354, 10, 366, 93, 42
OFFSET
0,2
COMMENTS
If n == 2 or 4 (mod 6) then a(n) = 3*n/2; if n == 3 (mod 6) then a(n) = 2*n/3; if n == 1 or 5 (mod 6) then a(n) = 6*n; otherwise, a(n) = n/6. Examples: n = 50 = 6*8+2, a(50) = 3*50/2 = 75; n = 23 = 6*3+5, a(23) = 6*23 = 138. - Bruno Berselli, Mar 08 2017
FORMULA
G.f.: x*(6 + 3*x + 2*x^2 + 6*x^3 + 30*x^4 + x^5 + 30*x^6 + 6*x^7 + 2*x^8 + 3*x^9 + 6*x^10) / ((1 - x)^2*(1 + x)^2*(1 - x + x^2)^2*(1 + x + x^2)^2).
a(n) = 2*a(n-6) - a(n-12) for n>11.
a(n) = A109047(n)/A089128(n). - R. J. Mathar, Feb 12 2019
Sum_{k=1..n} a(k) ~ (95/72)*n^2. - Amiram Eldar, Oct 07 2023
MATHEMATICA
Table[LCM[n, 6] / GCD[n, 6], {n, 0, 63}] (* Indranil Ghosh, Mar 08 2017 *)
PROG
(PARI) concat(0, Vec(x*(6 + 3*x + 2*x^2 + 6*x^3 + 30*x^4 + x^5 + 30*x^6 + 6*x^7 + 2*x^8 + 3*x^9 + 6*x^10) / ((1 - x)^2*(1 + x)^2*(1 - x + x^2)^2*(1 + x + x^2)^2) + O(x^100)))
(PARI) {for (n=0, 63, print1((lcm(n, 6) / gcd(n, 6)), ", "))}; \\ Indranil Ghosh, Mar 08 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Mar 07 2017
STATUS
approved