login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = lcm(n,6) / gcd(n,6).
4

%I #21 Oct 07 2023 05:06:40

%S 0,6,3,2,6,30,1,42,12,6,15,66,2,78,21,10,24,102,3,114,30,14,33,138,4,

%T 150,39,18,42,174,5,186,48,22,51,210,6,222,57,26,60,246,7,258,66,30,

%U 69,282,8,294,75,34,78,318,9,330,84,38,87,354,10,366,93,42

%N a(n) = lcm(n,6) / gcd(n,6).

%C If n == 2 or 4 (mod 6) then a(n) = 3*n/2; if n == 3 (mod 6) then a(n) = 2*n/3; if n == 1 or 5 (mod 6) then a(n) = 6*n; otherwise, a(n) = n/6. Examples: n = 50 = 6*8+2, a(50) = 3*50/2 = 75; n = 23 = 6*3+5, a(23) = 6*23 = 138. - _Bruno Berselli_, Mar 08 2017

%H Colin Barker, <a href="/A283443/b283443.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,2,0,0,0,0,0,-1).

%F G.f.: x*(6 + 3*x + 2*x^2 + 6*x^3 + 30*x^4 + x^5 + 30*x^6 + 6*x^7 + 2*x^8 + 3*x^9 + 6*x^10) / ((1 - x)^2*(1 + x)^2*(1 - x + x^2)^2*(1 + x + x^2)^2).

%F a(n) = 2*a(n-6) - a(n-12) for n>11.

%F a(n) = A109047(n)/A089128(n). - _R. J. Mathar_, Feb 12 2019

%F Sum_{k=1..n} a(k) ~ (95/72)*n^2. - _Amiram Eldar_, Oct 07 2023

%t Table[LCM[n, 6] / GCD[n, 6], {n,0,63}] (* _Indranil Ghosh_, Mar 08 2017 *)

%o (PARI) concat(0, Vec(x*(6 + 3*x + 2*x^2 + 6*x^3 + 30*x^4 + x^5 + 30*x^6 + 6*x^7 + 2*x^8 + 3*x^9 + 6*x^10) / ((1 - x)^2*(1 + x)^2*(1 - x + x^2)^2*(1 + x + x^2)^2) + O(x^100)))

%o (PARI) {for (n=0, 63, print1((lcm(n, 6) / gcd(n, 6)),", "))}; \\ _Indranil Ghosh_, Mar 08 2017

%Y Cf. A064680, A130724, A188134, A283442, A283444.

%K nonn,easy

%O 0,2

%A _Colin Barker_, Mar 07 2017