login
A283121
Expansion of exp( Sum_{n>=1} sigma(9*n)*x^n/n ) in powers of x.
6
1, 13, 104, 633, 3224, 14404, 58151, 216294, 751582, 2464860, 7689669, 22961822, 65955677, 182985947, 492016590, 1285829996, 3274100475, 8139933477, 19795490575, 47165634583, 110259083454, 253208634687, 571880965638, 1271549402110, 2785836824325, 6019078365425
OFFSET
0,2
LINKS
FORMULA
G.f.: Product_{n>=1} (1 - x^(3*n))^4/(1 - x^n)^13.
a(n) = (1/n)*Sum_{k=1..n} sigma(9*k)*a(n-k). - Seiichi Manyama, Mar 05 2017
a(n) ~ 1225 * sqrt(35) * exp(sqrt(70*n)*Pi/3) / (559872*n^3). - Vaclav Kotesovec, Mar 20 2017
EXAMPLE
G.f.: A(x) = 1 + 13*x + 104*x^2 + 633*x^3 + 3224*x^4 + 14404*x^5 + ...
log(A(x)) = 13*x + 39*x^2/2 + 40*x^3/3 + 91*x^4/4 + 78*x^5/5 + 120*x^6/6 + 104*x^7/7 + 195*x^8/8 + ... + sigma(9*n)*x^n/n + ...
CROSSREFS
Cf. A283123 (sigma(9*n)), A283169 (exp( Sum_{n>=1} -sigma(9*n)*x^n/n )).
Cf. A182818 (k=2), A182819 (k=3), A182820 (k=4), A182821 (k=5), A283119 (k=6), A283077 (k=7), A283120 (k=8), this sequence (k=9).
Sequence in context: A159352 A289859 A129762 * A278555 A282921 A023011
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 01 2017
STATUS
approved