login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129762
Sum of all elements of n X n X n cubic array M[i,j,k] = Fibonacci[i+j+k-2].
0
1, 13, 104, 615, 3149, 14912, 67537, 297945, 1293832, 5564911, 23795465, 101383680, 431003105, 1829784725, 7761645928, 32906509335, 139466630773, 590979780544, 2503927125041, 10608105770625, 44940061502216
OFFSET
1,2
COMMENTS
p^3 divides a(p-1) for prime p = {11,19,29,31,41,59,61,71,79,89,...} = A045468 Primes congruent to {1, 4} mod 5; also primes p that divide Fibonacci(p-1). a(n) is prime for n = {2,7,19,...}.
a(n) is prime for n = {2, 7, 19, 47, 175, 179, ...}. The formula a(n) = F(3n+4) - 3F(2n+4) + 3F(n+4) - 3 and its generalization for k-dimensional hypercubes with elements M(i,j,...) = F(i+j+...-k+1) was stated and proved by the user 1istik_figi in private communication at LiveJournal on Oct 10 2007. The k-dimensional formula is a(n) = Sum[(-1)^i*Binomial[k,i]*Fibonacci[(k-i)*n+k+1],{i,0,k}]. Conjecture: if prime p divides F(p-1) then p^k divides a(n) in k-dimensional case.
FORMULA
a(n) = Sum[ Sum[ Sum[ Fibonacci[i+j+k-2], {i,1,n} ], {j,1,n} ], {k,1,n} ].
a(n) = Fibonacci[3n+4] - 3*Fibonacci[2n+4] + 3*Fibonacci[n+4] - 3.
a(n) = 9*a(n-1) - 26*a(n-2) + 24*a(n-3) + 6*a(n-4) - 14*a(n-5) + a(n-6) + a(n-7). - Joerg Arndt, Apr 21 2011
G.f.: -x*(x^5 - 7*x^3 + 13*x^2 + 4*x + 1)/((x-1)*(x^2 - 3*x + 1)*(x^2 + x - 1)*(x^2 + 4*x - 1)). - Colin Barker, Aug 10 2012
MATHEMATICA
Table[ Sum[ Sum[ Sum[ Fibonacci[i+j+k-2], {i, 1, n} ], {j, 1, n} ], {k, 1, n} ], {n, 1, 30} ]
Table[ Fibonacci[3n+4] - 3*Fibonacci[2n+4] + 3*Fibonacci[n+4] - 3, {n, 1, 50} ]
LinearRecurrence[{9, -26, 24, 6, -14, 1, 1}, {1, 13, 104, 615, 3149, 14912, 67537}, 30] (* Harvey P. Dale, Aug 22 2021 *)
PROG
(Magma) [Fibonacci(3*n+4) - 3*Fibonacci(2*n+4) + 3*Fibonacci(n+4) - 3: n in [1..30]]; // Vincenzo Librandi, Apr 21 2011
CROSSREFS
Cf. A120297 = Sum of all matrix elements of n X n matrix M[i, j] = Fibonacci[i+j-1]. Cf. A000045, A045468, A001924, A062381.
Sequence in context: A080440 A159352 A289859 * A283121 A278555 A282921
KEYWORD
nonn,easy
AUTHOR
Alexander Adamchuk, May 15 2007, Oct 11 2007
STATUS
approved