login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A129763 Sum_{k=1..n} binomial(n+k-1, n)^2 / n. 1
1, 5, 39, 369, 3898, 44239, 528083, 6544745, 83496720, 1090091650, 14501708246, 195954553755, 2682953977174, 37150480629539, 519455719162283, 7325383709872345, 104080732316126716, 1488685017986884528, 21420051312840487968 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Note that sum_{k=1..n} binomial(n+k-1, n) / n = Catalan(n) = A000108(n).

p divides a((p-1)/2) for prime p = {5, 13, 17, 29, 37, 41, 53, ...) = A002144 Pythagorean primes: primes of form 4n + 1. [Alexander Adamchuk, Dec 27 2013]

LINKS

Table of n, a(n) for n=1..19.

FORMULA

G.f.: has an anti-derivative of a hypergeometric function, see Maple program.  - Mark van Hoeij, May 05 2013

Recurrence: 2*n^2*(2*n + 1)*(21*n^2 - 62*n + 46)*a(n) = (1365*n^5 - 6067*n^4 + 9948*n^3 - 7478*n^2 + 2640*n - 360)*a(n-1) - 4*(n-2)*(2*n - 3)^2*(21*n^2 - 20*n + 5)*a(n-2). - Vaclav Kotesovec, Mar 02 2014

a(n) ~ 16^n / (3*Pi*n^2). - Vaclav Kotesovec, Mar 02 2014

MAPLE

ogf := (4-x)^(1/2)*x^(-3/2)*Int((x+5/4)*hypergeom([1/2, 1/2], [1], 16*x)/((4-x)^(3/2)*x^(1/2)), x) - 5/(8*x);

series(eval(ogf, Int = proc(a, x) int(series(a, x=0, 30), x) end), x=0, 30);  - Mark van Hoeij, May 05 2013

MATHEMATICA

Table[ Sum[ Binomial[ n+k-1, n ]^2, {k, 1, n} ] / n, {n, 1, 30} ]

CROSSREFS

Cf. A000108 (Catalan numbers), A002144 (Pythagorean primes).

Sequence in context: A115187 A266456 A247772 * A277424 A182954 A215506

Adjacent sequences:  A129760 A129761 A129762 * A129764 A129765 A129766

KEYWORD

nonn

AUTHOR

Alexander Adamchuk, May 15 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 13 14:58 EST 2017. Contains 295958 sequences.