OFFSET
1,2
COMMENTS
a(n) is a 3-d analog of Wolstenholme Numbers (A001008) that are the numerators of Harmonic Numbers H(n) = Sum[ 1/i, {i,1,n} ]. n X n X n cubic array M[i,j,k] = 1/(i+j+k-2) is a 3-d analog of n X n Hilbert Matrix with elements M[i,j] = 1/(i+j-1). p divides a((p+1)/3) for prime p = {5,11,17,23,29,41,47,53,59,71,83,89,...} = A007528 Primes of form 6n-1. Sum[ Sum[ Sum[ (i+j+k-2), {i,1,n} ], {j,1,n} ], {k,1,n} ] = 1/2*n^3*(3n-1).
LINKS
Eric Weisstein, The World of Mathematics: Hilbert Matrix.
Eric Weisstein, The World of Mathematics: Harmonic Number.
FORMULA
a(n) = Numerator[ Sum[ Sum[ Sum[ 1/(i+j+k-2), {i,1,n} ], {j,1,n} ], {k,1,n} ] ].
MATHEMATICA
Table[ Numerator[ Sum[ Sum[ Sum[ 1/(i+j+k-2), {i, 1, n} ], {j, 1, n} ], {k, 1, n} ] ], {n, 1, 30} ]
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, May 15 2007
STATUS
approved