login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282686
Least sum of two proper prime powers (A246547) that is the product of n distinct primes.
0
13, 33, 130, 966, 14322, 81510, 3530730, 117535110, 2211297270, 131031070170, 1295080356570, 163411918786830, 3389900689405230, 414524121952915590, 2951531806477464210, 754260388389042905370
OFFSET
1,1
COMMENTS
Least value of A225102 that is the product of n distinct primes.
From Jon E. Schoenfield, Mar 18 2017: (Start)
For each n, we can write a(n) = p^j + q^k where p and q are prime and 2 <= j <= k; since a(n) is squarefree, p and q are distinct.
Suppose j and k are both even. Then a(n) cannot have any prime factor f such that f == 3 (mod 4) (see A002145). Thus, a(n) is the product of n distinct terms of {2, 5, 13, 17, 29, 37, 41, ...} = A002313, so a(n) >= Product_{i=1..n} A002313(i) = A185952(n).
In fact, however, a(n) < A185952(n) for n = 4..15, and it seems nearly certain that this holds for all n > 3. In any case, if we search for a(n) by generating products of n distinct primes and, for each such product P, testing whether there exists a solution for P = p^j + q^k, then we need not consider solutions in which both j and k are even unless P >= A185952(n).
Additionally, since the sum of any two cubes that is divisible by 3 is also divisible by 9 (hence nonsquarefree), any P that is divisible by 3 cannot be the sum of two cubes, so the exponents j and k cannot both be divisible by 3. (Every P < 2*5*7*11*...*prime(n+1) = A002110(n+1)/3 is divisible by 3.) Thus, for every P that is divisible by 3 and < A185292(n), we can rule out every ordered pair (j,k) except (2,3) and (3,4) (which could be tested together by computing t = P - r^3 for each prime r < P^(1/3) and, if t is square, checking whether sqrt(t) is a prime or the square of a prime) and those with k >= 5 (which could be tested by checking whether t = P - q^k is a prime power for each prime power q^k that is less than P and has k >= 5). (End)
a(17) <= 63985284333636413237490 = 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 37 * 41 * 43 * 59 * 61 * 103 * 409 = 10461281^3 + 250679912393^2. - Jon E. Schoenfield, Mar 31 2017
EXAMPLE
a(1) = 13 = 2^2 + 3^2.
a(2) = 33 = 5^2 + 2^3 = 3 * 11.
a(3) = 130 = 3^2 + 11^2 = 2 * 5 * 13.
a(4) = 966 = 5^3 + 29^2 = 2 * 3 * 7 * 23.
a(5) = 14322 = 17^3 + 97^2 = 2 * 3 * 7 * 11 * 31.
a(6) = 81510 = 29^3 + 239^2 = 2 * 3 * 5 * 11 * 13 * 19.
a(7) = 3530730 = 41^4 + 89^3 = 2 * 3 * 5 * 7 * 17 * 23 * 43.
a(8) = 117535110 = 461^3 + 4423^2 = 2 * 3 * 5 * 7 * 11 * 17 * 41 * 73.
From Jon E. Schoenfield, Mar 14 2017: (Start)
a(9) = 2211297270 = 1301^3 + 3037^2 = 2 * 3 * 5 * 7 * 13 * 17 * 29 * 31 * 53.
a(10) = 131031070170 = 1361^3 + 358483^2 = 2 * 3 * 5 * 7 * 11 * 13 * 17 * 43 * 47 * 127. (End)
From Giovanni Resta, Mar 14 2017: (Start)
a(11) = 810571^2 + 8609^3,
a(12) = 12694849^2 + 13109^3. (End)
From Jon E. Schoenfield, Mar 18 2017: (Start)
a(13) = 24537703^2 + 140741^3.
a(14) = 639414679^2 + 178349^3.
a(15) = 1632727069^2 + 658649^3. (End)
a(16) = 1472015189^2 + 9094049^3. - Jon E. Schoenfield, Mar 19 2017
MAPLE
N:= 1.2*10^8: # to get all terms <= N
PP:= {seq(seq(p^k, k=2..floor(log[p](N))), p = select(isprime, [2, seq(i, i=3..floor(sqrt(N)), 2)]))}:
PP:= sort(convert(PP, list)):
A:= 'A':
for i from 1 to nops(PP) do
for j from 1 to i do
Q:= PP[i]+PP[j];
if Q > N then break fi;
F:= ifactors(Q)[2];
if max(seq(f[2], f=F))>1 then next fi;
m:= nops(F);
if not assigned(A[m]) or A[m] > Q then A[m]:= Q fi
od od:
seq(A[i], i=1..max(map(op, [indices(A)]))); # Robert Israel, Mar 01 2017
MATHEMATICA
(* first 8 terms *) mx = 1.2*^8; a = 0 Range[8] + mx; p = Sort@ Flatten@ Table[ p^Range[2, Log[p, mx]], {p, Prime@ Range@ PrimePi@ Sqrt@ mx}]; Do[ j=1; While[j <= i && (v = p[[i]] + p[[j]]) < mx, f = FactorInteger@v; If[Max[Last /@ f] == 1, c = Length@f; If[c < 9 && v < a[[c]], a[[c]] = v]]; j++], {i, Length@p}]; a (* Giovanni Resta, Mar 19 2017 *)
PROG
(PARI) do(lim)=my(v=List(), u=v, t, f); t=1; for(i=1, lim, t*=prime(i); if(t>lim, break); listput(v, oo)); v=Vec(v); for(e=2, logint(lim\=1, 2), forprime(p=2, sqrtnint(lim-4, e), listput(u, p^e))); u=Set(u); for(i=1, #u, for(j=1, i, t=u[i]+u[j]; if(t>lim, break); f=factor(t)[, 2]; if(vecmax(f)==1 && t<v[#f], v[#f]=t))); apply(k->if(k==oo, "?", k), v) \\ Charles R Greathouse IV, Mar 19 2017
(PARI) do(lim)=my(v=List(), u=v, t, f, p2); t=1; for(i=1, lim, t*=prime(i); if(t>lim, break); listput(v, oo)); v=Vec(v); for(e=3, logint(lim\=1, 2), forprime(p=2, sqrtnint(lim-4, e), listput(u, p^e))); u=Set(u); for(i=1, #u, for(j=1, i, t=u[i]+u[j]; if(t>lim, break); f=factor(t)[, 2]; if(vecmax(f)==1 && t<v[#f], v[#f]=t))); forprime(p=2, sqrtint(lim), p2=p^2; for(i=1, #u, t=u[i]+p2; if(t>lim, break); f=factor(t)[, 2]; if(vecmax(f)==1 && t<v[#f], v[#f]=t))); forprime(p=2, sqrtint(lim), p2=p^2; forprime(q=2, min(sqrtint(lim-p2), p), t=p2+q^2; if(t>lim, break); f=factor(t)[, 2]; if(vecmax(f)==1 && t<v[#f], v[#f]=t))); apply(k->if(k==oo, "?", k), v) \\ Charles R Greathouse IV, Mar 19 2017
CROSSREFS
Sequence in context: A146177 A146194 A204707 * A124659 A164539 A245170
KEYWORD
nonn,more
AUTHOR
Altug Alkan, Feb 20 2017
EXTENSIONS
a(7)-a(8) from Giovanni Resta, Feb 21 2017
a(9)-a(10) from Jon E. Schoenfield, Mar 14 2017
a(11)-a(12) from Giovanni Resta, Mar 14 2017
a(13)-a(15) from Jon E. Schoenfield, Mar 18 2017
a(16) from Jon E. Schoenfield, Mar 19 2017
STATUS
approved