The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A282686 Least sum of two proper prime powers (A246547) that is the product of n distinct primes. 0

%I #65 Mar 31 2017 03:49:16

%S 13,33,130,966,14322,81510,3530730,117535110,2211297270,131031070170,

%T 1295080356570,163411918786830,3389900689405230,414524121952915590,

%U 2951531806477464210,754260388389042905370

%N Least sum of two proper prime powers (A246547) that is the product of n distinct primes.

%C Least value of A225102 that is the product of n distinct primes.

%C From _Jon E. Schoenfield_, Mar 18 2017: (Start)

%C For each n, we can write a(n) = p^j + q^k where p and q are prime and 2 <= j <= k; since a(n) is squarefree, p and q are distinct.

%C Suppose j and k are both even. Then a(n) cannot have any prime factor f such that f == 3 (mod 4) (see A002145). Thus, a(n) is the product of n distinct terms of {2, 5, 13, 17, 29, 37, 41, ...} = A002313, so a(n) >= Product_{i=1..n} A002313(i) = A185952(n).

%C In fact, however, a(n) < A185952(n) for n = 4..15, and it seems nearly certain that this holds for all n > 3. In any case, if we search for a(n) by generating products of n distinct primes and, for each such product P, testing whether there exists a solution for P = p^j + q^k, then we need not consider solutions in which both j and k are even unless P >= A185952(n).

%C Additionally, since the sum of any two cubes that is divisible by 3 is also divisible by 9 (hence nonsquarefree), any P that is divisible by 3 cannot be the sum of two cubes, so the exponents j and k cannot both be divisible by 3. (Every P < 2*5*7*11*...*prime(n+1) = A002110(n+1)/3 is divisible by 3.) Thus, for every P that is divisible by 3 and < A185292(n), we can rule out every ordered pair (j,k) except (2,3) and (3,4) (which could be tested together by computing t = P - r^3 for each prime r < P^(1/3) and, if t is square, checking whether sqrt(t) is a prime or the square of a prime) and those with k >= 5 (which could be tested by checking whether t = P - q^k is a prime power for each prime power q^k that is less than P and has k >= 5). (End)

%C a(17) <= 63985284333636413237490 = 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29 * 37 * 41 * 43 * 59 * 61 * 103 * 409 = 10461281^3 + 250679912393^2. - _Jon E. Schoenfield_, Mar 31 2017

%e a(1) = 13 = 2^2 + 3^2.

%e a(2) = 33 = 5^2 + 2^3 = 3 * 11.

%e a(3) = 130 = 3^2 + 11^2 = 2 * 5 * 13.

%e a(4) = 966 = 5^3 + 29^2 = 2 * 3 * 7 * 23.

%e a(5) = 14322 = 17^3 + 97^2 = 2 * 3 * 7 * 11 * 31.

%e a(6) = 81510 = 29^3 + 239^2 = 2 * 3 * 5 * 11 * 13 * 19.

%e a(7) = 3530730 = 41^4 + 89^3 = 2 * 3 * 5 * 7 * 17 * 23 * 43.

%e a(8) = 117535110 = 461^3 + 4423^2 = 2 * 3 * 5 * 7 * 11 * 17 * 41 * 73.

%e From _Jon E. Schoenfield_, Mar 14 2017: (Start)

%e a(9) = 2211297270 = 1301^3 + 3037^2 = 2 * 3 * 5 * 7 * 13 * 17 * 29 * 31 * 53.

%e a(10) = 131031070170 = 1361^3 + 358483^2 = 2 * 3 * 5 * 7 * 11 * 13 * 17 * 43 * 47 * 127. (End)

%e From _Giovanni Resta_, Mar 14 2017: (Start)

%e a(11) = 810571^2 + 8609^3,

%e a(12) = 12694849^2 + 13109^3. (End)

%e From _Jon E. Schoenfield_, Mar 18 2017: (Start)

%e a(13) = 24537703^2 + 140741^3.

%e a(14) = 639414679^2 + 178349^3.

%e a(15) = 1632727069^2 + 658649^3. (End)

%e a(16) = 1472015189^2 + 9094049^3. - _Jon E. Schoenfield_, Mar 19 2017

%p N:= 1.2*10^8: # to get all terms <= N

%p PP:= {seq(seq(p^k,k=2..floor(log[p](N))), p = select(isprime, [2,seq(i,i=3..floor(sqrt(N)),2)]))}:

%p PP:= sort(convert(PP,list)):

%p A:= 'A':

%p for i from 1 to nops(PP) do

%p for j from 1 to i do

%p Q:= PP[i]+PP[j];

%p if Q > N then break fi;

%p F:= ifactors(Q)[2];

%p if max(seq(f[2],f=F))>1 then next fi;

%p m:= nops(F);

%p if not assigned(A[m]) or A[m] > Q then A[m]:= Q fi

%p od od:

%p seq(A[i],i=1..max(map(op,[indices(A)]))); # _Robert Israel_, Mar 01 2017

%t (* first 8 terms *) mx = 1.2*^8; a = 0 Range[8] + mx; p = Sort@ Flatten@ Table[ p^Range[2, Log[p, mx]], {p, Prime@ Range@ PrimePi@ Sqrt@ mx}]; Do[ j=1; While[j <= i && (v = p[[i]] + p[[j]]) < mx, f = FactorInteger@v; If[Max[Last /@ f] == 1, c = Length@f; If[c < 9 && v < a[[c]], a[[c]] = v]]; j++], {i, Length@p}]; a (* _Giovanni Resta_, Mar 19 2017 *)

%o (PARI) do(lim)=my(v=List(),u=v,t,f); t=1; for(i=1,lim, t*=prime(i); if(t>lim,break); listput(v, oo)); v=Vec(v); for(e=2,logint(lim\=1,2), forprime(p=2,sqrtnint(lim-4,e), listput(u,p^e))); u=Set(u); for(i=1,#u, for(j=1,i, t=u[i]+u[j]; if(t>lim, break); f=factor(t)[,2]; if(vecmax(f)==1 && t<v[#f], v[#f]=t))); apply(k->if(k==oo,"?",k), v) \\ _Charles R Greathouse IV_, Mar 19 2017

%o (PARI) do(lim)=my(v=List(),u=v,t,f,p2); t=1; for(i=1,lim, t*=prime(i); if(t>lim,break); listput(v, oo)); v=Vec(v); for(e=3,logint(lim\=1,2), forprime(p=2,sqrtnint(lim-4,e), listput(u,p^e))); u=Set(u); for(i=1,#u, for(j=1,i, t=u[i]+u[j]; if(t>lim, break); f=factor(t)[,2]; if(vecmax(f)==1 && t<v[#f], v[#f]=t))); forprime(p=2,sqrtint(lim), p2=p^2; for(i=1,#u, t=u[i]+p2; if(t>lim, break); f=factor(t)[,2]; if(vecmax(f)==1 && t<v[#f], v[#f]=t))); forprime(p=2,sqrtint(lim), p2=p^2; forprime(q=2,min(sqrtint(lim-p2),p), t=p2+q^2; if(t>lim, break); f=factor(t)[,2]; if(vecmax(f)==1 && t<v[#f], v[#f]=t))); apply(k->if(k==oo,"?",k), v) \\ _Charles R Greathouse IV_, Mar 19 2017

%Y Cf. A225102, A246547.

%K nonn,more

%O 1,1

%A _Altug Alkan_, Feb 20 2017

%E a(7)-a(8) from _Giovanni Resta_, Feb 21 2017

%E a(9)-a(10) from _Jon E. Schoenfield_, Mar 14 2017

%E a(11)-a(12) from _Giovanni Resta_, Mar 14 2017

%E a(13)-a(15) from _Jon E. Schoenfield_, Mar 18 2017

%E a(16) from _Jon E. Schoenfield_, Mar 19 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 12:18 EDT 2024. Contains 372826 sequences. (Running on oeis4.)